Introduction to Graphs: Breadth-First, Depth-First Search, Topological Sort
Chapter 23

Graphs
So far we have examined treesin detail. Trees are a specific instance of a congtruct caled a

graph. Ingenerd, agraphiscomposed of edges E and vertices V that link the nodes together.
A graph G is often denoted G=(V,E) whereV is the set of vertices and E the set of edges.

Two types of graphs:.

1. Directed graphs. G=(V,E) where E is composed of ordered pairs of vertices; i.e. the edges
have direction and point from one vertex to another.

2. Undirected graphs. G=(V,E) where E is composed of unordered pairs of vertices; i.e. the
edges are bidirectiond.

Directed Graph:
Undirected Graph:
The degr ee of avertex in an undirected graph is the number of edges that |eave/enter the

vertex. The degree of avertex in adirected graph is the same but we distinguish between in-
degree and out-degree. Degree = in-degree + out-degree.

A pathfromutovis<u, wl, ...v>and (uwl)(Wlw2)(W2,w3)...(Wn,V)

Therunning time of a graph dgorithm expressed interms of E and V, where E = |E| and V=)V
eg. G=O(EV) is|E| * |V|

Implement a graph in three ways:

1. Pointersmemory for each node
2. Adjacency Ligt

3. Adjacency-Matrix

Using an Adjacency Lidt: Lig of pointers for each vertex

A

1 ® 2 ® 3
2 ®

3 ® 4

4 ® 1

5 ® 2 ® 4

OB WNE D>
CRONONCONE)
N PR D RN
CRONONCONE)
BWR oW

The sum of the lengths of the adjacency listsis 2|E| in an undirected graph, and |E| in adirected

graph.
The amount of memory to store the array for the adjacency list is O(max(V,E))=O(V+E).

Using an Adjacency Matrix:

1 2 3 4 5
1 0 1 1 0O O
2 o o o o0 o
3 0 0 O 1 0
4 1 o o0 o0 O
5 0 1 0 1 0

AN PO

1 2 3 4 5
1 0 1 1 1 0
2 1 O o0 ©O 1
3 1 O O 1 0
4 1 0 1 0 1
5 0 1 0 1 0

When is using an adjacency matrix agood idea? A bad idea?
The matrix aways uses Q(v?) memory. Usualy easier to implement and perform lookup than
an adjacency list.

Sparse graph: very few edges.
Dense graph: lots of edges. Up to V? edgesif fully connected.

The adjacency matrix isagood way to represent aweighted graph. Inaweighted graph, the
edges have weights associated with them. Update matrix entry to contain the weight. Weights
could indicate distance, cost, €tc.

Search: Thegod isto methodicaly explore every vertex and every edge; perhaps to do some
processing on each. Will assume adjacency-list representation of the input graph.

Breadth-First-Search (BFS) :

Example 1. Binary Tree. Thisisaspecia case of agraph. The order of search is across levels.
The root is examined firgt; then both children of the root; then the children of those nodes, etc.

(draw tree and show search path)

Sometimes we can stop the dgorithm if we are looking for a particular eement, but the generd
BFS dgorithm runs through every node.

Example 2: directed graph:

Pick a source vertex Sto dtart.

Find (or discover) the vertices that are adjacent to S.

Pick each child of Sin turn and discover their vertices adjacent to that child.
. Done when al children have been discovered and examined.

Thisresultsin atree that isrooted at the source vertex S.

Eal A o

The ideaisto find the distance from some Source vertex by expanding the “frontier” of what we
have visited.

Pseudocode: Uses FIFO Queue Q

BFS(s) ; Sisour source vertex
foreachul V - {s} ; Initidize unvidted verticesto ¥
dodul- ¥
ds - 0 ; distance to source vertex is0
Q- {s ; Queue of verticesto vigt
while Q<>0 do

remove u from Q
foreachv | Adj[u] do; Get adjacent vertices

if div]= ¥
thendv] = d[u]+1 ; Increment depth
put v onto Q ; Add to nodesto explore

Differences from book:
Not tracking predecessor’'svia p

Usesinfinity instead of colors (white, gray)
Not using enqueue, degqueue; combine dequeue with head of Q

Example (thisisthe find gate, gart with O and infinity as vaues)

Initidly, d[@] isset to 0 and therest to ¥ .

Q- [4a.

Remove head: Q-]
children of aarec,b
dic]= ¥ ,d[b]= ¥ sod[c] - da+1=1,d[b] - da+1=1
Q- [ch]

Remove head: Q- [b]
children of c are ef
del= ¥ ,df]= ¥ sod[eg] = d[c]+1=2, d[f] = d[c]+1=2
Q- [bef]

Remove head: Q- [ef]
childrenof bisf
d[f] <> ¥ , nothing donewith it

Remove head: Q- [f]
children of eisd, i, h
dd]= ¥ ,d[i]= ¥ ,dh]= ¥ sod[d] - di] = dh] - de]+1=3
Q- [fdih

Remove head: Q- [di h]
children of disg
dlgl= ¥ ,sod[g] - d[d]+1=3
Q- [dihd]

Each of these has children that are dready has avaue lessthan ¥ |, so these will not set any
further values and we are done with the BFS.

Can cregte atree out of the order we vidit the nodes:

Memory required: Need to maintain Q, which contains alist of al fringe verticeswe need to
explore.

Runtime: O(V+E) ; O(E) to scan through adjacency list and O(V) to vist each vertex. Thisis
congdered linear timein thesze of G.

Clam: BFS dways computes the shortest path distance in d[1] between S and vertex 1. We will
skip the proof for now.

What if some nodes are unreachable from the source? (reverse c-ef-h edges). What vaues do
these nodes get?

Depth First Search: Another method to search graphs.

Example 1: DFS on binary tree. Specidized case of more generd graph. The order of the
search is down paths and from left to right. The root is examined firgt; then the left child of the
root; then the left child of this node, etc. until alesaf isfound. At aleaf, backtrack to the lowest
right child and repest.

(Show example binary tree DFS)

Example 2: DFS on directed graph.
1. Start at some source vertex S.
2. Find (or explore) the first vertex that is adjacent to S.
3. Repeat with this vertex and explore the first vertex that is adjacent to it.
4. When avertex isfound thet has no unexplored vertices adjacent to it then
backtrack up one level
5. Donewhen dl children have been discovered and examined.
Resultsin aforest of trees.

Pseudocode:
DFS(s)
for each vertex ul V
do color[u] = White ; ot visited
time- 1 ; ime gamp
for each vertex ul V
do if color[u]=White
then DFS-Vigt(u,time)
DFS-Vist(utime)
colorfu] = Gray ; In progress nodes
diu] = time ; d=discover time
time- timetl

foreachv | Adj[u] do
if color[u]=White
then DFS-Vigt(v,time)
colorfu] = Black
flu] = time- timet+l ; f=finish time

Example

N\ v @

® o
| >GT |09

|

4/7 8/15

Numbers are Discover/Finish times. We could have different visit times depending on which
edges we pick to traverse during the DFS.

The tree built by this search looks like:
al
C

I

o] [
] [
df [

What if some nodes are unreachable? We il visit those nodesin DFS. Congder if
c-¢, f-h links were reversed. Then we end up with two separate trees.

1112

\, 110 @
6)5/6 . @\ 15/16
G | W

/
O T TIoe

Stll vigt dl verticesand get aforest: a set of unconnected graphs without cycles (atreeisa
connected graph without cycles).

Timefor DFS:
O(V?) - DFSloop goes O(V) times once for each vertex (can’t be more than once,
because a vertex does not stay white), and the loop over Adj runsup to V times.

But...

Thefor loop in DFS-Vigt looks at every lement in Adj once. It is charged once per
edge for adirected graph, or twice if undirected. A smal part of Adj islooked at during each
recursive cal but over the entire time the for loop is executed only the same number of times as
the sze of the adjacency lig whichiis Q (E).

Sincetheinitid loop takes Q (V) time, thetotd runtimeis Q (V+E). Thisis consdered
linear in terms of the Sze of the input adjacency-list representation. So if there are lots of edges
then E dominates the runtime, otherwise V does.

Note: Don't have to track the backtracking/fringe asin BFS since thisis done for usin
the recursive cals and the stack. The stack makes the nodes ordered LIFO. The amount of
storage needed islinear in terms of the depth of the tree.

Typesof Edges. There are 4 types. These will be useful later. DFS can be modified to
classfy edges as being of the correct type:

1. Tree Edge: An edgein adepth-first forest. Edge(u,v) isatree edgeif v wasfirg discovered
fromu.

2. Back Edge: An edge that connects some vertex to an ancestor in a depth-firgt tree. Sdlf-
loops are back edges.

3. Forward Edge: An edge that connects some vertex to a descendant in a depth-first tree.

4. Cross Edge: Any other edge.

DAG'’s

Nothing to do with sheep! A DAG isaDirected Acyclic Graph. Thisisadirected graph that
contains no cycles.

Examples:

ﬁ\
Q/

®\ — ©

<\t>//<‘a

A directed graph D isacycliciff aDFS of G yields no back edges.

Proof: Trivid. Acyclic meansno back edge because a back edge makes acycle. Suppose we
have a back edge (u,v). Thenv isan ancestor of u in the depth-first forest. But then thereis
aready apath from v to u and the back edge makes acycle.

Suppose G hasacyclec. But then DFS of G will have aback edge. Let v bethefirst vertex in
c found by DFS and let u be avertex in ¢ that is connected back to v. Then when DFS
expands the children of u, the vertex v isfound. Sincev isan ancestor of u the edge (u,v) isa
back edge.

—O—0

s

. .

Topological Sort of adag

A topologicd sort of adag isan ordering of dl the vertices of G so that if (u,v) isan edgethen u
islisted (sorted) beforev. Thisisadifferent notion of sorting than we are used to.

a,b,f,ed,c andf,aeb,c,d are both topologica sorts of the above dag. There may be multiple
sorts; thisis okay snce ais not related to f, either vertex can comefird.

Main use: Indicate order of events, what should happen first

Algorithm for Topological-Sort:

1. Cdl DFS(G) to compute f(v), the finish time for each vertex.
2. Aseach vertex isfinished insert it onto the front of the lig.

3. Returnthelig.

Timeis Q (V+E), timefor DFS.

Example: Pizza directed graph

\ 6/11
sausage
PP
/

13/14

1/12
2/3
4/5

DFS: Start with sauce.
The numbersindicate gart/finish time. Weinsat into the list in reverse order of finish time,

Crugt, Sauce, Sausage, Olives, Oregano, Cheese, Bake
Why does thiswork? Because we don’t have any back edgesin adag, so wewon't return to

process a parent until after processing the children. We can order by finish times because a
vertex that finishes earlier will be dependent on avertex that finishes later.

