CHA1l
Intro to Genetic Algorithms

A GA isasearch dgorithm based on the mechanics of natural sdlection and naturd
genetics. Using theidea of the surviva of the fittest among string structures with a
randomized information exchange, they form a powerful search agorithm.

The ideawas invented by John Holland at the Univerdaty of Michigan in 1970's, but only
in the last decade hasit become popular, spawning its own conferences.

Let's say we have a population of crittersin the world. How do they survive according to
Dawinian evolution?

Population of critters
Some of them are better able to survive in their environment (smaler and require
lessfood, bigger and stronger, longer neck to reach food)
Each critter has ameasure of “fitness’ - how well it survivesin the environment
The morefit individuas will tend to survive
Thelessfit individuas will tend to die off
Theindividuds that survive will have sex and reproduce, passng their surviving
characterigtics on to their children through their genes
random crossover, get characteristics of both parents
random mutation, randomly changed genes
Presumably children will be even morefit than the previous generation
Repest process, getting more and more fit individuas in each generation.

Dangers.
Need diverse genetic poal, or we can get inbreeding : stagnant population base
No guarantee that children will be better than parents, could be worse, could
lose a super individud

Example: chameleon crittersin thewild. Lets say thet we show their genes as strings of
bits:

lalafafafa]1] o] | 1{of o] ofo] o] 0]

\CI’OSSOVGI‘ /

| 1] ofolofa]1] o]




In this example, we performed genetic crossover, getting a new chameleon that is even

better than the first one.

Okay, s0 this may be the case, so what?

The important thing to note is that the population asawholeislearning. Itislearning to
adapt to the environment, defined by the fitness function. What if the fitness function is
not how well something can survive in nature, but how well a particular program solves a
computer problem? Then if the individuas are computer programs, and we have a
known god (fitness function), then we can evolve computer programs to solve the godl.

Population of critters ->
Surviving in environment >
Fitness measure in nature >
Fitindividudslive poor die >

Passgenesdongviamating >

Population of computer solutions

Solving computer problem

Fitness measure solving computer problem
We play God and kill computer solutions
that do poorly, keep those that do well.

i.e. weare “breeding’ the best solutions
Pass genes dong through computer mating

Repest process, getting more and morefit individuas in each generation.

Usudly represent computer solutions as bit strings.

Smple Ex: looking for the MAX vaue of some function:

Traditiona techniques. we could use hill dimbing: ook a neighbors, and go in direction
of dope. Or we could use some caculus methods. One problem that may occur isthe
system might get stuck at local minima. Or we could go through dl possibilities
exhaudively, but if the search space istoo large this doesn’t work ether.

Let'smake our individuas just be numbers along the X axis, represented as bit strings,

and initidize them randomly:

Individudl 1 : 000000000
Individud 2 001010001
Individud 3 100110110

Individua N : 110101101



Fitnessfunction: 'Y vaue of each solution. Thisisthefitnessfunction. Note that even
for NP complete problems, we can often compute a fitness (remember that solutions for
NP Complete problems can be verified in Polynomid time).

Take the individuds that did the best, and probabiligticdly kill off theworst. Perform N
meatings so that we get anew population of size N:

Crossover: Randomly select crossover point, and swap code

Individua 1: 001010001
Individud 22 100110110

New child: 100110001 ; hascharacteristics of both parents,
hopefully better than before

Or could have done:

Individud 1: 001010001
Individual 22 100110110

New child: 100110111 ; very little changein this case

Muitatiort Just randomly flip some hits ; low probability of doing this
Individud: 011100101
New: 111100101

Mutation keeps the gene pool active and hel ps prevent stagnation.

Repest process with each new generation until we get a satisfactory solution (or solution
converges on some vaue).

Thismay look crazy, likeit is equivalent to random search, but it does avery good jobin
many cases It is much better than random search, and in many cases is better than many
heurigtic search dgorithms. The randomization aso helps us say out of loca minima,
while still converging on asolution. Don't believeit works? Try it out! It'svery smple
to code.

In this Smple example, we just used bit strings representations that mapped into numbers.
They could just as easily have mapped into decision rules (IF-THEN...), probabilities for
abayesan classfier, linear discriminants, parameters for aneura network, or whatever
elseyou would like. The overdl genetic dgorithm remainsthe same. We could even
apply the technique to programs, so that we evolve pieces of code. Thistechniqueis
cdled evolutionary programming, or genetic programming and was firgt proposed by
John Koza of Stanford.



