
CS411 
Intro to Genetic Algorithms 
 
A GA is a search algorithm based on the mechanics of natural selection and natural 
genetics.  Using the idea of the survival of the fittest among string structures with a 
randomized information exchange, they form a powerful search algorithm. 
 
The idea was invented by John Holland at the University of Michigan in 1970’s, but only 
in the last decade has it become popular, spawning its own conferences.   
 
Let’s say we have a population of critters in the world.  How do they survive according to 
Darwinian evolution? 
 
 Population of critters 
 Some of them are better able to survive in their environment  (smaller and require 

 less food, bigger and stronger, longer neck to reach food) 
 Each critter has a measure of “fitness” - how well it survives in the environment 
 The more fit individuals will tend to survive 
 The less fit individuals will tend to die off 
 The individuals that survive will have sex and reproduce, passing their surviving 

characteristics on to their children through their genes 
random crossover, get characteristics of both parents 

   random mutation, randomly changed genes 
  Presumably children will be even more fit than the previous generation 
 Repeat process, getting more and more fit individuals in each generation. 
 
Dangers: 
 Need diverse genetic pool, or we can get inbreeding : stagnant population base  
 No guarantee that children will be better than parents, could be worse, could 
  lose a super individual 
 
 
Example: chameleon critters in the wild.  Lets say that we show their genes as strings of 
bits: 
 

1 1 1 1 1 1 0 1 0 0 0 0 0 0

1 0 0 0 1 1 0

crossover

critters must survive

 
 



 
In this example, we performed genetic crossover, getting a new chameleon that is even 
better than the first one. 
 
Okay, so this may be the case, so what? 
 
The important thing to note is that the population as a whole is learning.   It is learning to 
adapt to the environment, defined by the fitness function.  What if the fitness function is 
not how well something can survive in nature, but how well a particular program solves a 
computer problem?   Then if the individuals are computer programs, and we have a 
known goal (fitness function), then we can evolve computer programs to solve the goal. 
 
Population of critters  à   Population of computer solutions 
Surviving in environment à  Solving computer problem 
Fitness measure in nature à  Fitness measure solving computer problem 
Fit individuals live, poor die à  We play God and kill computer solutions 
      that do poorly, keep those that do well. 
      i.e. we are “breeding” the best solutions 
Pass genes along via mating à  Pass genes along through computer mating 
Repeat process, getting more and more fit individuals in each generation. 
 
Usually represent computer solutions as bit strings. 
 
Simple Ex: looking for the MAX value of some function: 

 
 
Traditional techniques:  we could use hill climbing: look at neighbors, and go in direction 
of slope.  Or we could use some calculus methods.  One problem that may occur is the 
system might get stuck at local minima.  Or we could go through all possibilities 
exhaustively, but if the search space is too large this doesn’t work either. 
 
Let’s make our individuals just be numbers along the X axis, represented as bit strings, 
and initialize them randomly: 

Individual 1  : 000000000 
Individual 2 : 001010001 
Individual 3 : 100110110 
…. 
Individual N : 110101101 



Fitness function:  Y value of each solution.  This is the fitness function.  Note that even 
for NP complete problems, we can often compute a fitness (remember that solutions for 
NP Complete problems can be verified in Polynomial time). 
 
Take the individuals that did the best, and probabilistically kill off the worst.  Perform N 
matings so that we get a new population of size N: 
 
 Crossover:  Randomly select crossover point, and swap code 
  
  Individual 1: 001010001 
  Individual 2: 100110110 
 
  New child :  100110001 ; has characteristics of both parents, 
      hopefully better than before 
 
  Or could have done: 
 
  Individual 1: 001010001 
  Individual 2: 100110110 
 
  New child: 100110111 ; very little change in this case 
 
 Mutation: Just randomly flip some bits ; low probability of doing this 
  Individual:  011100101 
  New:  111100101 
 
 Mutation keeps the gene pool active and helps prevent stagnation. 
 
 
Repeat process with each new generation until we get a satisfactory solution (or solution 
converges on some value). 
 
This may look crazy, like it is equivalent to random search, but it does a very good job in 
many cases!  It is much better than random search, and in many cases is better than many 
heuristic search algorithms.  The randomization also helps us stay out of local minima, 
while still converging on a solution.  Don’t believe it works?  Try it out!  It’s very simple 
to code. 
 
In this simple example, we just used bit strings representations that mapped into numbers.  
They could just as easily have mapped into decision rules (IF-THEN…), probabilities for 
a bayesian classifier, linear discriminants, parameters for a neural network, or whatever 
else you would like.  The overall genetic algorithm remains the same.  We could even 
apply the technique to programs, so that we evolve pieces of code.  This technique is 
called evolutionary programming, or genetic programming and was first proposed by 
John Koza of Stanford. 
 


