More Tidbitson Data Compression

/

(Above, Lena, unwitting data compression spokeswoman)

We have already discussed creating Huffman codes. Let’s examine some other methods of compressing
data (run-length, arithmetic, and LZW) and also look briefly at the format used in JPEG images.

Run-Length Encoding

Datafiles often contain the same character repeated in sequence. For example, text files contain multiple
spaces for formatting tables or columns. Images may contain multiple 0'sor 1’'sfor al black or al white.
Digitized signals often contain long runs of zeros, for example quiet time between notes or times when the
signal is not changing.

The idea behind run length encoding is to represent long runs of zeros. Each run of zeros (or some other
repeating character) is represented by aflag indicating that run-length compression is beginning. Theflag
isfollowed by the number of zeros. The flag could be expanded to include the actual repeating character if
we wish to use this technique for more thanjust zeros.

The process on a sample datastream isindicated below:

original datastreamn: 17 8 54 0 00 97 5 16 04523 0 0 0 0 0 3 &7 0 0§

rundength encoded: 17 8 54 03 97 5 160 145230 5 367 0 2 §

The PackBits program on the Macintosh used a generalized RLE scheme for data compression.

Arithmetic Encoding

In arithmetic encoding, we turn an entire datastream into asingle number! The more datawe have, the
greater precision we will need in representing the number.

There are two fundamentals in arithmetic coding: the probability of asymbol and its encoding interval range.
The probahilities of source symbols determine the compression efficiency. They also determine the interval
ranges of source symbolsfor the encoding process. These interval ranges are contained within the interval
from zero to one. Theinterval ranges for the encoding process determine the compression output. Thisis
best demonstrated by an example.

L et us assume that the source symbolsare{ 00, 01, 10, 11} and the probabilities of these symbolsare{ 0.1,
0.4,0.2, 0.3}, respectively. Then, based on these probabilities, the interval [0,1) can be divided as four sub-
intervals. [0,0.1), [0.1,0.5), [0.5,0.7), [0.7,1), where [X,y) denotes ahalf open interval, which includes x but
excludesy. The above information can be summarized in table:

Symbols 00 01 10 11

Probabilities 0.1 0.4 0.2 0.3

Initial Encoding I ntervals [[0,0.1) f0.1,05) [[050.7) [[0.7,1)

To encode amessage of abinary sequence 10 00 11 00:

We take the first symbol 10 from the message and find its encoding range is[0.5,0.7). Since the range of the
second symbol 00 from the messageis[0,1), it is encoded by taking the first 10th of interval [0.5,0.7) asthe
new interval [0.5,0.52). In other words, we treat the range from [0.5, 0.7) as an entireinterval, and then use
thefirst 0.1 of thisinterval for the second symbol. This processis repeated for the rest of the symbols. To
encode the third symbol 11, we have anew interval [0.514,0.52). After encoding the fourth symbol 00, the
new interval is[0.514,0.5146). The compression output of this message can be any number in the last
interval. For example, we could pick 0.5145.

To decode the data, we apply the processin reverse. We need to know the probability ranges, presumably
transmitted with the data unencoded:

Given 0.5145, thevaueisin therange[0.5, 0.7) soit is symbol 10.

Given 0.5145, the valueisin the 1% 10" of theinterval [0.5, 0.7) so it is symbol 00.
Given 0.5145, the valueisin the 7" 10" of theinterval [0.5, 0.52) so it is symbol 11.
Given 0.5145, the value isin the 1% 10" of theinterval [0.514, 0.52) soit is symbol 00.

The resulting sequence of symbolsis now 10, 00, 11, 00.
Some issuesto note:

1) Since no single machine exists with an infinite precision, "underflow" and "overflow" are the obvious
problemsfor the real world machines. We can use multiple bytes or words to represent higher precision
if necessary, at additional expense in decoding these bytes and mapping them to the precision of the
machine (e.g. 32, 64 hits).

2) Anarithmetic coder produces only one codeword, areal number in interval [0,1), for the entire message
to be transmitted. We cannot perform decoding process until we received all bits representing this real
number.

3) Arithmetic coding is an error sensitive compression scheme. A single bit error can corrupt the entire

message.
LZW Compression

Thisisavery popular form of compression that is used as the basis for many commercia and non-
commercial compression programs (gzip, pkzip, GIF, compressed postscript, “disk doublers’). LZW
compression is named after its developers, A. Lempel and J. Ziv, with later modifications by Terry A. Welch.
It isthe foremost technique for general purpose data compression due to its simplicity and versatility.
Typically, you can expect LZW to compress text, executable code, and similar datafiles to about one-half
their original size.

LZW issimilar to Huffman encoding, except it uses a code table for sequences of characters. Consider the
example below:

Bmmple Code Table

code numbe frandation
onoo 0
3| oooz 1
@ : :
§| 0254 254
| 0255 255
3 [0236 145 201 4
q 0257 243 245
i :
8 | 4095 T EEX EEX

otiginal data streary 125 145 201 4 119 B2 243 245 58 11 208 145 201 4 243 245

code mble enccded: 123 256 119 82 257 52 11 206 256 257 -

LZW compression uses acode table. A common choiceisto provide 4096 entriesin the table. In this case,
the LZW encoded data consists entirely of 12 bit codes, each referring to one of the entriesin the code
table. Uncompression is achieved by taking each code from the compressed file, and translating it through
the code table to find what character or charactersit represents. Codes 0-255 in the code table are always
assigned to represent single bytes from the input file. For example, if only these first 256 codes were used,
each byteinthe original file would be converted into 12 bitsin the LZW encoded file, resulting in a 50%
larger file size. During uncompression, each 12 bit code would be translated via the code table back into the
single bytes. Of course, thiswouldn't be auseful situation.

The LZW method achieves compression by using codes 256 through 4095 to represent sequences of bytes.
For example, code 523 may represent the sequence of three bytes: 231 124 234. Each time the compression
algorithm encounters this sequence in the input file, code 523 is placed in the encoded file. During
uncompression, code 523 istranslated viathe code table to recreate the true 3 byte sequence. The longer
the sequence assigned to a single code, and the more often the sequence is repeated, the higher the
compression achieved.

Although thisis a simple approach, there are two major obstacles that need to be overcome: (1) how to
determine what sequences should be in the code table, and (2) how to efficiently determine if a sequence of
data has an entry in the code table.

#1 isthe subject of many algorithms (the authors of LZW propose one way to determine the codes using a
statetable). For example, one could devise any algorithm to find repeat strings and use that to determine the
code table sequences. The longest, most repeating strings could be given a code assignment.

#2 could be implemented in asimple or complicated manner. However thisimplementation will greatly affect
the execution time of the compression algorithm because it must search the code table to determineif a
match is present. As an analogy, imagine you want to find if afriend's nameislisted in the telephone
directory. The catch is, the only directory you haveis arranged by telephone number, not al phabetical order.
Thisrequires you to search page after page trying to find the name you want. Thisinefficient situationis
exactly the same as searching all 4096 codes for amatch to a specific character string. The answer: organize
the code tabl e so that what you are looking for tells you where to look (like a partially a phabetized
telephone directory). In other words, don't assign the 4096 codes to sequential locationsin memory. Rather,
divide the memory into sections based on what sequences will be stored there. For example, suppose we

want to find if the sequence: code 329 + X, isin the code table. The code table should be organized so that
the"x" indicates where to starting looking. There are other schemes using hash tables, additional indices,
and other techniques to help speed up the lookup process. There are many schemes for thistype of code
table management, and they can become quite complicated.

JPEG Image Compression

Many methods of lossy compression have been devel oped; however, afamily of techniques called
transform compression has proven the most valuable. The most popular for images, and one of the best
techniques, isthe JPEG format. JPEG is named after its origin, the Joint Photographers Experts Group. We
will describe the general operation of JPEG to illustrate how lossy compression works. A block diagram of
the encoding processis below.

?ée? S:sﬁte — Quanti | Binax} 011010...
] uantizer

Enecod
block Transform HCOGEr | Cutput data

strearm

JPEG compression starts by breaking the image into 8x8 pixel groups. The full JPEG algorithm can accept a
wide range of bits per pixel, including the use of color information. In this example, each pixel isasingle
byte, agrayscale value between 0 and 255. These 8x8 pixel groups are treated independently during
compression. That is, each group isinitially represented by 64 bytes. Why use 8x8 pixel groupsinstead of,
for instance, 16x16? The 8x8 grouping was based on the maximum size that integrated circuit technology
could handle at the time the standard was devel oped. In any event, the 8x8 size works well, and it may or
may not be changed in the future.

231|224 224 [Z1T217 | 203 |ENS |L96
210217 (203 180 J205 | 224 | 217 | 224
196 (207 (210224 §20% | 203 (196|182
2100 [20F 1106 {203 142|203 f182 {1 80
i ; 20% (224 (203 (217|196 | 175|154 [L140

15Z (189 [168F161 J154 126 (119112

S pixels —» |

. 175 {154 126 {105 Qa0 | 105 jRi9 | s

154 L 98 [105] 98 JI05] 63 |U12) 34

42 |28 |35 |28 |42 |49 |35 (42
154 (154 [175 182 189 |165 [217 175 40 (a9 |35 |28 |35 |35 |35 |42
1341147 | 104 | 154 |15 1655 196 {173 42 |21 |21 |26 {42 |35 |42 |25
175 {154 |20 175 Jugo 122 o {152 20 135 (35 laz laz [2a 12m 1a
17 (168|168 168 140 175 168 {203 56 (70 |77 | e [o1 [2a |28 |21
133 {168 1154 |19 [175 &9 [203 (154 0 (126|153 |147 151 | 91 |35 | 14
168|161 {161 158 f12d 124 fuen {1so ilzma aelz s s las (o
147 et [17a ez [1ae fims fror 7S 39 (e laesorohiee | as 120 Jax
1FE PTG 1?5 189 [AT5 LTS (LE82

The 8x8 group ideais demonstrated above on agreyscale image. |f we wereworking with acolor image, we
would essentially have the same picture for a Red, Green, and Blue component.

The next ideaisto treat each 8x8 group asasignal in the frequency domain. For example, in the Fourier
transform, we can represent asignal as a summation of sine and cosine waves. JPEG uses the Discrete
Cosine Transform (DCT), arelative of the Fourier transform, but the DCT only uses cosine waves.

When the DCT istaken of an 8x8 group, it resultsin an 8x8 spectrum. In other words, 64 numbers are
changed into 64 other numbers. All these values are real; there is no complex mathematics here. Just asin
Fourier analysis, each value in the spectrum is the amplitude of abasisfunction. Y ou can think of these
numbers as coefficients. Each coefficient represents the intensity of a particular 8x8 image each of whichis
shown in the diagram below. These 64 coefficients can be combined to give back the original 8x8 block of
the image to be compressed.

Thisis avisual representation of 64 images that result from the DCT. Theimagesin the upper left
correspond to “high frequency” spatial images, while the lower right are lower frequency. We can re-create
any 8x8 image block using these basi /principal-component images. For example, 255* (upper-left-
image)+0* (all other images) resultsin an all white block of pixels.

This at first, does not appear to give any saving since each DCT coefficient is represented with with 8 bits.
The saving comes into play when you consider that the high spatial frequency DCT coefficients occur less
and actually make less visual impact on the image. This meansthese DCT coefficients can be represented
with fewer bits (ie. they are lessimportant to the image).

This step of reducing the number of bits representing DCT coefficientsis called quantization. For each JPEG
compressed image, there is a quantization table that determines how many bits represent each DCT
coefficient. By using fewer bits, we get better compression.

First, when you consider how to order the DCT coefficients, it would be reasonable to order themin azig-
zag way as shown in the diagram below:

-

(]

Given that the high spatial frequency DCT coefficients areless likely to be needed, many of these values will
be zero and so improve compression when using Run-Length, Huffman or Arithmetic Encoding.

In the JPEG compression so far, we have 64 DCT coefficients each of which can have values to differing
degrees of accuracy. Thisgivesriseto the fact that many of the coefficients will be zero valued and so using
Variable Length Integers (VLI) would improve the compression. Essentially, we determinein advance which
image blocks should be represented with high precision (8 bits) or low precision (1 or 2 bits). High

frequencies are not as visible to humans for example, so it makes sense to only use a couple of bitsto
represent these values, resulting in compression with almost no perceptible difference to humans. Since
some of the run-size codes occur more frequently than others, it would be prudent to use either Huffman or
Arithmetic Encoding. JPEG uses Huffman coding even though Arithmetic encoding gives 5-10%
improvement over Huffman, thisis because IBM own the intellectual property on Arithmetic Encoding and
JPEG was designed to be freely available.

Note that we can use the quantization step to vary the amount of compression. If we only use a couple of
bits to represent each coefficient, then we will have high compression at the cost of afuzzy image. Similarly,
we could use al the bits (but compressed) for an exact replica of the original image.

Here are a couple of images with varying quality factors from an original 82K

QF75 21K

QF 20 75K

QF5 32K

QF3 25K

