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Chapter 1-3  : Basic Concepts, Recurrence with Substitution 
 
Algorithms – so what is an algorithm, anyway? 
 
The dictionary definition:  An algorithm is a well-defined computational procedure that takes input and 
produces output.  This class will deal with how to design algorithms and understand their complexity in 
terms of runtime, space, and correctness. 
 
Examples: data compression, path-finding, game-playing, scheduling, bin packing 
 
Example algorithm: Insertion Sort 
 
Insertion sort is how people often sort a hand of cards.  Starting from the left, go towards the right and 
make sure that everything on the left hand side is correctly sorted.  For example: 
 
Original: 5 3 8 2 10 7 
Pass 1:  3 5| 8 2 10 7 
Pass 2:  3  5 8| 2 10 7 
Pass 3:  2 3 5 8| 10 7 
Pass 4:  2 3 5 8 10| 7 
Pass 5:  2 3 5 7 8 10| 
 
Here is the pseudocode for the Insertion sort algorithm. 
Typically we will use pseudocode and not actual implementation code. 
 
Insertion-Sort(A)     ; Assume our arrays start at index 1 and not at 0 
 For jß 2 to length(A) 
 Do  

keyßA[j] 
iß j-1 
while i>0 and A[i] > key 
 do 
  A[i+1]ß A[i] 
  iß i-1 
A[i+1]ßkey 

 
Run through algorithm on our input, 5 3 8 2 10 7 
J=2 
 A=[5 3 8 2 10 7] Key=3 
 I=1 
 A[1]>3 so A[2]=A[1] 
 A[1]=3 
J=3 
 A=[3 5 8 2 10 7] Key=8 
 I=2 
 A[2] < 8 
 A[3]=8 
J=4 
 A=[3 5 8 2 10 7] Key=2 
 I=3 
 A[3]>2 so A[4]=A[3] 



 A[2]>2 so A[3]=A[2] 
 A[1]>2 so A[2]=A[1] 
 A[1]=2  

J=5 
 A=[2 3 5 8 10 7] 
 … 
 The final two passes are left as an exercise for you to verify. 
 
It looks like this algorithm works to sort the input. But how do we analyze it?  There are also certainly 
many other ways to sort the data (and we’ll look at lots of them!) What makes one algorithm better than 
another? 
 
Let’s make an assumption that we will use throughout most of this class. 
 
RAM model.  This is a uniprocessor, random access machine with no parallelism (PRAM). 
 
Run time and space will generally depend on the size of the input. 
 
Input Size ‘n’ : Definition of n depends on the problem.  It may be bits, bytes, but is usually the number of 
items in the input.  For sorting, n=# of items to sort.  For a graph, n could be the number of nodes or the 
number of links. 
 
Running time: defined as the number of steps that are executed in the program. 
 
Lets count up the runtime for this algorithm. This can be a little tricky since the loop doesn’t always run the 
same number of times, but varies depending on the input. 
 
Let t j = the # of times the inner while loop is examined for the current value of j.  This includes checking 
for the exit condition of the loop. 
 
Code     Cost  Times 
 
For jß 2 to length(A)   C1  n 
Do  

keyßA[j]   C2  n-1 
iß j-1    C3  n-1 

while i>0 and A[i] > key  C4  t jj
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A[i+1]ßkey   C7  n-1 
 

The statement for the outer j loop will run n times (once for each element, once to check the exit condition).  
The inner statements run n-1 times.  Since we’ve defined tj as the number of times the inner loop is 
executed for a value of j, to get the total times it is run we just add up the sum or all values of j. 
 
Our total runtime is then: 
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Doing a little math: 
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What’s the best case?  If the input is already sorted.  In this case, ∀ =j t j, 1 .  That is the inner loop only 

gets executed once since we’ll immediately find the right spot for the last item. 
 
Runtime for this case: 
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 (C1+C2+C3+C7)(n) – (C2+C3+C7) + (C4)(n-1)  
 
 (C1+C2+C3+C4+C7)(n)-(C2+C3+C7+C4) 
 
 = (CONSTANT1)n – CONSTANT2 
 
 This is a linear function of n ; y=ax+b.  The runtime will increase linearly as the size of the input 
increases 
. 
 
 
   
 
 
 
 
 
 
 
 
What’s the worst case?  Lets say that the input conspires to provide the worst runtime.  This would happen 
if the array was in reverse order, because then we have to compare with every other number in the inner 
loop. 
 
 5 4 3 2 1 
j=2 tj = 2 compares 
j=3 tj = 3 compares 
j=4 tj = 4 compares 
… 
 
So we know that t j = j 
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Plug these into our formula: 
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Of the form (Constant1)(n2)  + (Constant2)(n) + Constant3 
 
This is a quadratic; an2+bn+c; the runtime will increase based on the square of the input. 
 
 
 
 
 
 
 
 
 
 
 
Average case is also quadratic. 
 
How much space does this take?  Sort is done in place, so just a few variables. 
This requires constant space. 
 
 

Function Growth 
 

θ -notation : Gives asymptotically tight bound on a functions growth 
 
Definition: 
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F(n)=3n   is  θ (n) since we can find g(n)=n, c1=1, c2=4. 
 
Insertion sort is not θ (n2) since it is linear in the best case. 
However, average and worst case insertion sort is θ (n2). 
 
 
O-notation: Big-O notation.  This gives an asymptotic upper bound. 
Definition: 

( ) { }O g n f n c n f n c g n( ) ( ): , : ( ) ( )= ∃ ≤ ≤1 0 10 for all n n≥ 0  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Insertion sort is O(n2).  Tight upper bound in the worst case, loose in the best case. 
Looser:  O(n3), O(2n).   
Use little-o notation if you know that it is a loose bound. 
o(n3) if f=n2. 
 
 
Ω - Omega notation.  Omega provides an asymptotic lower bound. 
Definition: 
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Ω (1) – Constant time, this is a trivial lower bound for most cases. 
For insertion sort, Ω (n) : linear time is the best possible 
Running Time Comparison: 
 
θ   n=10  n=100  n=1000  n=10000 
 
lg(n)  2  5  7  9 
n  10  100  1000  10000 
n(lg(n))  20  500  7000  90000 
n2  100  10000  1,000,000 100,000,000 
2n  1024  1.3x1030  huge  very huge  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For comparison: estimate of the number of atoms in the universe is about 1080 (i.e. about 2270). 
 
Tool we will use for analysis and solutions: Divide and Conquer  
 
Recursive approach to solve problems.   The idea is to break the problem up into sub-problems with the 
same solution, but smaller size.  Solve these problems recursively, the combine the sub-solutions to solve 
the original problem. 
 
Divide – into sub-problems  
Conquer – Sub-problems recursively 
Combine – Sub-problem solutions to original problem 
 
Let’s look at Merge Sort: 
 Divide n elements into two subsequences to be sorted of size n/2 
 Conquer – sort subsequences recursively with merge sort 
 Combine – merge sorted subsequences into big sorted answer 
Need termination criteria for recursion – 
 Quit if sequence to sort is length 1  
 
Pseudocode: 

Merge_Sort(A,p,r) 
  If p<r then 

   qß 
p r+



2

 

  Merge_Sort(A,p,q) 
  Merge_Sort(A,q+1,r) 

   Merge(A,p,q,r) 

 

n 
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Call with Merge_Sort(A,1,length(A)) 
q gets the median, merge left, right 
 
A[1…5…10] becomes Merge_Sort(A,1,5),  Merge_Sort(A,6,10) 
How do we merge? 
 
 A1:  1 5 8 30 31 50 
 A2: 2 10 11 12 15 
 
Combined: 1  2  5  8  10  11  12  15  30  31  50 
 
Easy to do; just start at the front of each array, compare the pointers, and put the smallest into a new array 
and then increment the pointer that was the smallest.  
 
If n is the number of elements to merge, then it takes θ (n) time to merge. 
 
 
Example: A= 1 5 3 7 11 8 2 4 

 
How much work is done?  It’s the cost to split + the cost to merge. 
Let’s define T(n) to be the runtime for a problem of size(n). 
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The 2T(n/2) comes from the divide, and the θ (n) comes from the merge. 
Later we will show that Merge Sort is θ (nlgn) in runtime. 
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Math Review 
 

 x - floor of x, round down 

 x - ceiling of x, round up 
 
lg(x) = log2 x 
ln x = loge x 
 

a b b a= log  
 
logc(ab) = logc(a) + logc(b) 
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c

c

a
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logb (1/a) = -logba 
 
logba = 1 / (logab) 
 

a nb bn alog log=  
 
iterated log : log(log n) = log(2)n 
This grows very slowly!  Almost the same as constant time. 
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There are some others in chapter 3, but these are the ones you will use most frequently for this course. 
 
 
Monte Carlo Methods  
 
Throughout this class we’ll focus primarily on analytic methods to characterize algorithms.  However, there 
is another class of statistical/probabilistic methods that are commonly referred to as Monte Carlo 
algorithms. From http://www.qpsf.edu.au/mirrors/csep/mc/node1.html: 
 
Numerical methods that are known as Monte Carlo methods can be loosely described as statistical 
simulation methods, where statistical simulation is defined in quite general terms to be any method that 
utilizes sequences of random numbers to perform the simulation. Monte Carlo methods have been used for 
centuries, but only in the past several decades has the technique gained the status of a full-fledged 
numerical method capable of addressing the most complex applications.  The name “Monte Carlo” was 
coined during the Manhattan Project of World War II, because of the similarity of statistical simulation to 
games of chance, and because the capital of Monaco was a center for gambling and similar pursuits.  
 



Monte Carlo is now used routinely in many diverse fields, but has gained some of the greatest popularity in 
computer science and physics.  For example, consider a complex physical system (solar system, nuclear 
reaction, quantum chromodynamics, traffic patterns, etc.) that has been modeled through a series of pdf’s 
(probability density functions).   The behavior and interaction of the model with the input is often too 
complex to determine deterministically.  Instead, the system is simulated by running many trials using 
random inputs selected from a proper range.   The resulting output helps us learn about the outputs of the 
system and the complexity of the system. 
 
As another example, the merge sort example we previously covered could be analyzed using a monte carlo 
method by randomly selecting inputs, running the algorithm, and measuring the runtime (or the number of 
comparisons).  By averaging out the average runtime, we could determine that merge sort is a θ (nlgn) 
algorithm. 
 
 
Recurrence Relations 
 
Earlier we said that: 
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Is θ (nlgn). 
 
The next section will show how to compute these bounds.  There are generally three methods we will 
discuss to solve the problems: 
 Substitution 
 Iteration 
 Master Method 
 
Note that we will typically drop out the lower order terms.  
For example, if an algorithm runs in θ (n) + θ (1) time, the θ (n) will dominate so we can just drop the 
θ (1) term comp letely.   
 
Substitution Method 
 
 The substitution method consists of the following steps: 
 

1. Guess the form of the solution 
2. Use mathematical induction to find the constants of the solution, assume the solution works 

for up to n.  We need to then show the solution works for n+1; this is a weak form of proof by 
induction. 

3. Show that the solution works for the new case 
4. This method works best if its easy to guess the form of the answer 
5. Solve the base case 
 

Example: Given T(n)= K   , i.e.θ (1) for n<=1  ; Where K is a constant 
   often not specified and left implicit 

T(n)=2T(n/2) + n  for n>1  ; similar to what we had for merge sort 
 
 Let’s guess the form of the solution is O(nlgn). 
 
 Next we need to prove that T(n) ≤ c n lg(n)  for c>0 (recall definition of O(nlgn) 



  
 Substitute back in to original guess: 
  T(n) ≤  2(c(n/2)lg(n/2) + n 
  T(n) ≤ cn lg(n/2) + n 
  T(n) ≤ cn lg(n) – cnlg2 +n 
  T(n) ≤  cn lg(n) – cn +n 
  T(n) ≤ cn lgn    if c≥ 1 
 
 Looks good so far, we must also show the boundary condition (or base case) fits our guess by  

showing that T(constant) from the original recurrence ≤  guess condition. 
 
 We guessed that T(n) ≤ c n lg(n)  
 If T(1)=K then 
  T(1) ≤ c(1)lg1 
  T(1) ≤  c*1*0 
 In the original however, T(1) = K.  
 

Is K ≤  c(0)?  This does not work for ANY value of c.  We know it takes more time than 0! 
 
 But we don’t have to make the T(1)=K solution fit, we can use a higher number of n. 
 Remember we only need to show that the solution is true for n > n0 and can ignore  

transients early on. 
 
 Try  T(2) ≤  c2lg2 
  T(2) ≤ c2 
 
 Orig: T(2) = 2T(n/2)+2 
  T(2) = 2T(1) + 2 
  T(2) = 2K + 2 
  
 Is 2K+2 ≤ c2?  The guess is true for c ≥ K+1  so we are done. 
 

In the above example, it is common to “cheat” a little bit and instead assume that T(1) = 1 instead 
of T(1) =θ (1).   
 
The reason is to simplify the analysis a bit.   Let’s look at what we would have if we used T(1)=1 
instead and tried to solve for the base case: 

 
 Try T(2) ≤ c2 
 Orig: T(2) = 2T(n/2)+2 
  T(2) = 2T(1) + 2 
  T(2) = 2(1) + 2   
  T(2) = 4 
 

Is 4 ≤ c2 ?   Yes, if 2 ≤  c.   We can still make the base case work for T(1)= 1.  The difference is 
that there is a constant factor using the T(1)=K, that is missing when we assume T(1)=1.  For a 
slightly easier analysis, we will often assume that T(1)=1 to simplify the process.  However, 
remember that even if T(1) = θ (1), it is safe to assume T(1)=1 to prove the recurrence. 

 
 

How to guess: 
 
 It is often useful to drop the asymptotically insignificant constants. 
  

Ex: T(n) = 2T(n/2  + 17)  +n 



 
Ignore the constants, since for a large n they are insignificant.  Guess O(nlgn) 
 
Or, prove a loose upper and lower bounds, then try to reduce the bounds. 
E.g., start with O(n3), O(n2), …   assume only Ω (n) initially in recurrence. 
 

 Subtract Terms: 
 
 T(n)=T(n/2) + T(n/2) + 1 
 
 If you guess T(n) ≤ cn  linear 
 Get T(n) ≤  cn/2 + cn/2 + 1 
  T(n) ≤  cn + 1 
 This is not ≤  cn for any value of n! 
 
 Instead try subtracting out the lower order term that is causing problems: 
 
 Try T(n) ≤  cn – b   ; b>= 0 
 Get T(n) ≤  (cn/2)-b  + (cn/2)-b   + 1 
  T(n) ≤  cn – 2b + 1 
  T(n) ≤  cn –b   ; if b>=1 then this works to satisfy the solution 
 
 Changing Variables: 
 

 Consider T(n) = 2T( n ) + lgn  ; looks hard! 
 
 Let m=lg n  ; n = 2m 
 Get T(2m) = 2T(n1/2) + m 
  T(2m) = 2T(2m/2) + m 
 Let S(m) = T(2m) 
 
 à S(m)=2S(m/2) + m   ; We solved this already! 
 
 = O (m lgm) = O(lgn lglgn)  ; This grows very slowly!  
 
 
Second substitution example: 
 
Given :  T(n) = θ (1)  if n=1 
 T(n) = 4T(n/2) + n if n>1 
 
 Let’s guess that the solution is O(n lgn) 
 So we need to show that T(n) ≤  cn lgn 
 
 Show:  T(n) ≤  4 (c(n/2)lg(n/2)) + n 
  T(n) ≤  2cn lg(n)  -  2cn lg2  + n 
  T(n) ≤  2cn lgn  - 2cn  + n 
  T(n) ≤  2cn lgn  - (2c+1) n 

This is NOT of the form cn lgn for any value of c!  Must match the exact form of the induction  
hypothesis or the result is not valid.  Additionally, this result is not ≤  cnlgn for all n n≥ 0 . 

 
 New try:  Guess solution is O(n2)  
 So we need to show that T(n) ≤  cn2 
  



 Show: T(n) ≤  4(c(n/2)2) + n 
  T(n) ≤  4c(n2/4) + n 
  T(n) ≤  cn2 + n 
 Does not work either!  But its close. 
 
 Off by a factor of n, so lets try subtracting off that term. 
  
 Try: T(n) ≤  cn2 –n 
 
  T(n) ≤  4((cn2/4) – (n/2)) + n 
  T(n) ≤  cn2 – 2n +n 
  T(n) ≤  cn2 – n 
 This is a match!  c = any value > 0. 
 
 We also need to show the base case: 
 
 In our guess, T(2) ≤  4c – 2 
 In original,  T(2) = 4T(2/2) + 2 
   T(2) = 4+2 
   T(2) = 6 
 So our guess is safe as long as c>1. 
 
 
Be careful!  The solution must match the EXACT form of the induction hypothesis. 
Ex:  Given T(n) = 2T(n/2) + n 
 Guess T(n) ≤  cn 
 Show  T(n) ≤ 2c(n/2) + n 
  T(n) ≤ cn + n 
 
 It looks like this works, since we have cn+n which is O(n) and something O(n) is ≤ cn but it is not 
the exact same form as our guess. It has an extra n in there that the guess does not.  (The ultimate solution 
may still be O(n) though!  But this doesn’t prove it.  For this problem, a guess of T(n) ≤  c would work).   
 
 


