
1

Rule Induction Overview

• Generic separate-and-conquer strategy

• CN2 rule induction algorithm

• Improvements to rule induction

Problem

• Given:

– A target concept

– Positive and negative examples

– Examples composed of features

• Find:

– A simple set of rules that discriminates between

(unseen) positive and negative examples of the

target concept

2

Sample Unordered Rules

• If X then C1

• If X and Y then C2

• If NOT X and Z and Y then C3

• If B then C2

• What if two rules fire at once? Just OR

together?

Target Concept

• Target concept in the form of rules. If we only
have 3 features, X, Y, and Z, then we could
generate the following possible rules:

– If X then…

– If X and Y then…

– If X and Y and Z then…

– If X and Z then …

– If Y then …

– If Y and Z then …

– If Z then…

• Exponentially large space, larger if allow NOT’s

3

Generic Separate-and-Conquer Strategy

TargetConcept = NULL

While NumPositive(Examples) > 0

BestRule = TRUE

Rule = BestRule

Cover = ApplyRule(Rule)

While NumNegative(Cover) > 0

For each feature ∈ Features

Refinement=Rule ∪ feature

If Heuristic(Refinement, Examples) >

Heuristic(BestRule, Examples)

BestRule = Refinement

Rule = BestRule

Cover = ApplyRule(Rule)

TargetConcept = TargetConcept ∪ Rule

Examples = Examples - Cover

Trivial Example

1: a,b
2: b,c

3: c,d
4: d,e

+

-

PositiveNegative

Positive
examplesruleHeuristic

##

#
),(

+

=

H(T)=2/4

H(a)=1/1

H(b)=2/2

H(c)=1/2

H(d)=0/2

H(e)=0/1

Say we pick a. Remove

covered examples:

2: b,c

3: c,d
4: d,e

+

-

H(a ∨ b)=1/1

H(a ∨ c)=1/2

H(a ∨ d)=0/2

H(a ∨ e)=0/1

Pick as our rule: a ∨ b.

4

CN2 Rule Induction (Clark & Boswell, 1991)

• More specialized version of separate-and-

conquer:

CN2Unordered(allexamples, allclasses)

Ruleset � {}

For each class in allclasses

Generate rules by CN2ForOneClass(allexamples, class)

Add rules to ruleset

Return ruleset

CN2

CN2ForOneClass(examples, class)

Rules � {}

Repeat

Bestcond � FindBestCondition(examples, class)

If bestcond <> null then

Add the rule “IF bestcond THEN PREDICT class”

Remove from examples all + cases in

class covered by bestcond

Until bestcond = null

Return rules

Keeps negative examples around so future rules won’t

impact existing negatives (allows unordered rules)

5

CN2
FindBestCondition(examples, class)

MGC � true ‘ most general condition

Star � MGC, Newstar � {}, Bestcond � null

While Star is not empty (or loopcount < MAXCONJUNCTS)

For each rule R in Star

For each possible feature F

R’ � specialization of Rule formed by adding F as an

Extra conjunct to Rule (i.e. Rule’ = Rule AND F)

Removing null conditions (i.e. A AND NOT A)

Removing redundancies (i.e. A AND A)

and previously generated rules.

If LaPlaceHeuristic(R’,class) > LaPlaceHeuristic (Bestcond, class)

Bestcond � R’

Add R’ to Newstar

If size(NewStar) > MAXRULESIZE then

Remove worst in Newstar

until Size=MAXRULESIZE

Star � Newstar

Return Bestcond

LaPlace Heuristic

NumClassesruleveredNumTotalCo

ruleCoveredNumCorrect
ruleLaPlace

+

+
=

)(

1)(
)(

In our case, NumClasses=2.

A common problem is a specific rule that covers only 1 example.

In this case, LaPlace = 1+1/1+2 = 0.6667. However, a rule that

covers say 2 examples gets a higher value of 2+1/2+2 = 0.75.

6

Trivial Example Revisited
1: a,b
2: b,c

3: c,d
4: d,e

+

-

L(T)=3/6

L(a)=2/3

L(b)=3/4

L(c)=2/4

L(d)=1/4

L(e)=1/3

Say we pick beam=3. Keep T, a, b.

L(a ∧ b)=2/3

L(a ∧ c)=1/2

L(a ∧ d)=1/2

L(a ∧ e)=1/2

Our best rule out of all these is just “b”.

Specialize T : (all already done)

Specialize a: (Keep b, a, a^b)

Specialize b: (Keep b, a, a^b)

L(b ∧ a)=2/3

L(b ∧ c)=2/3

L(b ∧ d)=0

L(b ∧ e)=0

Continue until out of features, or max num of conjuncts reached.

Improvements to Rule Induction

• Better feature selection algorithm

• Add rule pruning phase

– Problem of overfitting the data

– Split training examples into a GrowSet (2/3)
and PruneSet (1/3)

• Train on GrowSet

• Test on PruneSet with pruned rules, keep rule with
best results

– Needs more training examples!

7

Improvements to Rule Induction

• Ripper / Slipper

– Rule induction with pruning, new heuristics on
when to stop adding rules, prune rules

– Slipper builds on Ripper, but uses boosting to
reduce weight of negative examples instead of
removing them entirely

• Other search approaches

– Instead of beam search, genetic, pure hill
climbing (would be faster), etc.

In-Class VB Demo

• Rule Induction for Multiplexer

