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Introduction to Monte Carlo 
Methods and Monte Carlo Trees 

Traditional Minimax 
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Minimax 

• Doesn’t work so well on games with very large 
branching factors/search space 

– Game of Go often cited 

– 9x9 here but normally 19x19 

– Can try heuristics for pruning 

• Don’t seem to work that well 

Monte Carlo Approach 

• An alternative to minimax is a Monte Carlo 
approach 

– Simulate complete game with random moves and 
use the results to pick the best move 

– Consider tic tac toe and playing many random 
games, we would likely find that moving in the 
center first resulted in more wins than moving 
into one of the sides 
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Monte Carlo Example 

• Applet for playing Connect-Four 

• http://beej.us/blog/2010/01/monte-carlo-
method-for-game-ai/ 

 

• Space requirements? 

• Runtime? 

• Heuristic? 

• Cases where this fails? 

 

One Solution 

• Merge traditional minimax search with Monte 
Carlo approach 

• Can do a minimax search to some depth then 
use Monte Carlo as an evaluation function 
– Requires ability to complete minimax to some 

reasonable depth (e.g. at least 2 or more ply) 

• Other approaches attempt to balance how we 
explore the top part of the tree instead of 
deterministic like minimax 
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Background – Multi arm bandit 
problem 

• Consider a slot machine with K 
arms 
– Pulling arms in sequences give 

different random payouts 
– What arms should you pull to 

maximize your payout given some 
number of coins to play? 

• Dilemma: Explore or Exploit? 
– Explore: Test to find out the best 

arm 
– Exploit: Pull the best arm we have 

found so far to get some payout 

 
 

 
 

Balancing Exploitation vs. Exploration 

• Upper Confidence Bound 

– For arm i 
• Payouti = $ won playing arm i 

• ni = Number of times arm i played 

• N = total number of plays so far 

• Can multiply exploration constant c in front of bias 

• Pull the arm with the highest UCB 

– Expected payout rewards arm that has paid 

– Bias increases for arm that hasn’t been played much 
• Maybe it’s been unlucky and we need to try it again 

– There is theory that performance from the optimal is 
bounded 

 

𝑈𝐶𝐵𝑖 =
𝑃𝑎𝑦𝑜𝑢𝑡𝑖

𝑛𝑖
+

𝑙𝑔𝑁

𝑛𝑖
 

Expected Payout 

Bias 
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Applying to Trees 

• Kocsis and Szepervari (2006) “Bandit based 
Monte-Carlo Planning” 

– Formalized a complete Monte Carlo Tree Search 
algorithm by extending UCB to minimax tree 
search 

– Named it the Upper Confidence Bounds for Trees 
(UCT) method 

– Most MCTS algorithms use UCT method 

Basic MCTS Algorithm 

Selection: Recursively pick best node that maximizes UCB for Trees (UCT) 
                   as long as the node is visited more than N0 times 
Expansion: Add child node(s) off the selected node to the list of possible nodes 
                     we can select in the next round; only 1 node in simplest implementation 
Simulation: Randomly simulate game to completion 
Backprop: Update nodes on the path with simulation results (wins, number of visits) 
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MCTS Visualization 

• No minimax backup; only backup the outcomes to compute UCT 
• Proven to converge to the minimax value  
• Explores tree in a best-first manner 

Success of Monte Carlo Tree Search 

• Considered a breakthrough for Go 
– Used by best programs able to beat amateur humans 

• Doesn’t require a heuristic and can be used for 
problems with large branching factors 

• Other gaming applications; good where there is 
randomness or uncertainty 
– Settlers of Catan 
– Real Time Strategy Games 
– Can still be used with classical board games 
– Might work well for TZAAR? 

• Workshops devoted to MCTS 



11/29/2011 

7 

Resources 

• http://www.mcts.ai 

• http://remi.coulom.free.fr/Hakone2007/ 
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