
11/29/2011

1

Introduction to Monte Carlo
Methods and Monte Carlo Trees

Traditional Minimax

65 35 90 49 62 30 83 80

65 90 62 83

65 62

65

11/29/2011

2

Minimax

• Doesn’t work so well on games with very large
branching factors/search space

– Game of Go often cited

– 9x9 here but normally 19x19

– Can try heuristics for pruning

• Don’t seem to work that well

Monte Carlo Approach

• An alternative to minimax is a Monte Carlo
approach

– Simulate complete game with random moves and
use the results to pick the best move

– Consider tic tac toe and playing many random
games, we would likely find that moving in the
center first resulted in more wins than moving
into one of the sides

11/29/2011

3

Monte Carlo Example

• Applet for playing Connect-Four

• http://beej.us/blog/2010/01/monte-carlo-
method-for-game-ai/

• Space requirements?

• Runtime?

• Heuristic?

• Cases where this fails?

One Solution

• Merge traditional minimax search with Monte
Carlo approach

• Can do a minimax search to some depth then
use Monte Carlo as an evaluation function
– Requires ability to complete minimax to some

reasonable depth (e.g. at least 2 or more ply)

• Other approaches attempt to balance how we
explore the top part of the tree instead of
deterministic like minimax

http://beej.us/blog/2010/01/monte-carlo-method-for-game-ai/
http://beej.us/blog/2010/01/monte-carlo-method-for-game-ai/
http://beej.us/blog/2010/01/monte-carlo-method-for-game-ai/
http://beej.us/blog/2010/01/monte-carlo-method-for-game-ai/
http://beej.us/blog/2010/01/monte-carlo-method-for-game-ai/
http://beej.us/blog/2010/01/monte-carlo-method-for-game-ai/
http://beej.us/blog/2010/01/monte-carlo-method-for-game-ai/
http://beej.us/blog/2010/01/monte-carlo-method-for-game-ai/
http://beej.us/blog/2010/01/monte-carlo-method-for-game-ai/
http://beej.us/blog/2010/01/monte-carlo-method-for-game-ai/
http://beej.us/blog/2010/01/monte-carlo-method-for-game-ai/
http://beej.us/blog/2010/01/monte-carlo-method-for-game-ai/

11/29/2011

4

Background – Multi arm bandit
problem

• Consider a slot machine with K
arms
– Pulling arms in sequences give

different random payouts
– What arms should you pull to

maximize your payout given some
number of coins to play?

• Dilemma: Explore or Exploit?
– Explore: Test to find out the best

arm
– Exploit: Pull the best arm we have

found so far to get some payout

Balancing Exploitation vs. Exploration

• Upper Confidence Bound

– For arm i
• Payouti = $ won playing arm i

• ni = Number of times arm i played

• N = total number of plays so far

• Can multiply exploration constant c in front of bias

• Pull the arm with the highest UCB

– Expected payout rewards arm that has paid

– Bias increases for arm that hasn’t been played much
• Maybe it’s been unlucky and we need to try it again

– There is theory that performance from the optimal is
bounded

𝑈𝐶𝐵𝑖 =
𝑃𝑎𝑦𝑜𝑢𝑡𝑖

𝑛𝑖
+

𝑙𝑔𝑁

𝑛𝑖

Expected Payout

Bias

11/29/2011

5

Applying to Trees

• Kocsis and Szepervari (2006) “Bandit based
Monte-Carlo Planning”

– Formalized a complete Monte Carlo Tree Search
algorithm by extending UCB to minimax tree
search

– Named it the Upper Confidence Bounds for Trees
(UCT) method

– Most MCTS algorithms use UCT method

Basic MCTS Algorithm

Selection: Recursively pick best node that maximizes UCB for Trees (UCT)
 as long as the node is visited more than N0 times
Expansion: Add child node(s) off the selected node to the list of possible nodes
 we can select in the next round; only 1 node in simplest implementation
Simulation: Randomly simulate game to completion
Backprop: Update nodes on the path with simulation results (wins, number of visits)

11/29/2011

6

MCTS Visualization

• No minimax backup; only backup the outcomes to compute UCT
• Proven to converge to the minimax value
• Explores tree in a best-first manner

Success of Monte Carlo Tree Search

• Considered a breakthrough for Go
– Used by best programs able to beat amateur humans

• Doesn’t require a heuristic and can be used for
problems with large branching factors

• Other gaming applications; good where there is
randomness or uncertainty
– Settlers of Catan
– Real Time Strategy Games
– Can still be used with classical board games
– Might work well for TZAAR?

• Workshops devoted to MCTS

11/29/2011

7

Resources

• http://www.mcts.ai

• http://remi.coulom.free.fr/Hakone2007/

http://www.mcts.ai/
http://beej.us/blog/2010/01/monte-carlo-method-for-game-ai/
http://remi.coulom.free.fr/Hakone2007/
http://remi.coulom.free.fr/Hakone2007/

