
1

Introduction to Information 

Retrieval

Information Retrieval Introduction

• In CS A201, CS A351 we discuss methods for 

string matching

– Appropriate for “small” documents that fit in memory 

available

– Not appropriate for massive databases like the WWW 

• The field of IR is concerned with the efficient 

search and retrieval of documents, often 

involving text

– Documents are indexed

– Index is searched based upon a query



2

Indexing

• What should be indexed?
– Words

– Phrases (e.g., president of the U.S.)

– Whole sentences

• Recognizing phrases is non-trivial and does not appear 
to considerably improve retrieval

• Using words for indexing is the most common approach

Document Tokenize Stemmer

Stop ListIndex

What’s a Word?

• Recognizing word boundaries is almost 
trivial in English

– separated by white spaces or punctuation

• More difficult in languages such as Dutch 
or German, compounds are not separated 
by spaces

– Pretty difficult for Arab and Asian languages

• Problems in English are mainly due to 
punctuation



3

Tokenization

• A tokenizer recognizes word boundaries

– In . . . sold the company. the period is not 
part of company

– . . . but in . . . in the U.S.A. it is

• Remove hyphens in adjective phrases 
such as well-performing system

• Some compounds are not separated by 
white spaces, e.g., spacewalk, waterway, 
household, shortcoming

Morphological Normalization
• How to make sure that company and companies and sell

and sold match?

• Could ignore, but matching morphological variants 
increases recall

• To remove morphological information such as tense and 
number: 
– Stemming

• A set of rules is used to remove suffixes

• E.g., If word ends in ies, but not eies, aies then change ies�y
– policies to policy

• Cheap, but unrelated words such as police and policy can be 
reduced to the same stem : polic

– Lemmatization
• Use dictionary-type lookup for irregular words, more expensive

• Most search engines don’t use stemming, more interested 
in precision (getting relevant documents you want) than 
recall (not missing documents that are relevant)



4

Stop Words

• Our document is now a list of tokenized, 
stemmed words or terms

• Some of these terms don’t have much content
– E.g. The, he, she, why, and, of

– These words are often ignored and are called stop 
words

– They can be easily filtered by using a list of commonly 
compiled stop words, e.g. 400 or so words

• Why eliminate stop words?
– Using stop words does not improve retrieval

– But reduces the size of the index considerably

– Also can reduces retrieval time

Vector Space Document Model

• Given a collection of documents, processed into 
a list (i.e. vector) of terms and a query Q, also 
turned into a vector
– Bag of words model:  assumes each word is 
independent of the other

• Terms and Weights
– Associated with each document term is a weight.  

– The weight may be binary (typically whether or not 
the term exists in the document), or it might be a 
floating point value between 0 and 1 where 0 
indicates that this term is not relevant to the 
document, and 1 indicates that it is highly relevant to 
the document.  



5

Vector Space Example

Terms:

artificial

intelligence

information

retrieval

mock

kenrick

Doc 1:

1

1

0

1

1

0

Doc 2:

1

1

0

0

1

1

Doc 3:

0.3

0.6

0

0.01

0.99

0.85

Query

0.5

0.9

0.01

0.91

0.99

0.01

Comparing Query to Documents

• Treat the Query and Document as vectors, and 
use standard vector comparison metrics

• Given vectors 
X=(x1,x2,D, xt) Document

Y=(y1, y2,D,yt) Query

• Where:
xi - weight of term i in the document and 

yi - weight of term i in the query

• For binary weights, let:
|X| = number of 1s in the document and

|Y| = number of 1s in query



6

Comparison Metrics

∑ ∑

∑

∑

+
t

1=i

t

1=i

22

t

1=i

t

1=i

  

 2

              
|Y|+|X|

|YX| 2 
t   coefficien Dice

                   |YX|      product   Inner 

ectors         v          ors      vect                              

 term weighted       Formbinary teror          F                    

ii

ii

ii

yx

yx

yx

I

I

Comparison Metrics

∑ ∑ ∑

∑

∑ ∑

∑

−+

=

t

1=i

t

1=i

t

1=i

22

t

1=i

t

1=i 1

22

t

1=i
1/21/2

  

     
|YX|-|Y|+|X|

|YX|  
  cofficient Jaccard

 

           
|Y||X|

|YX|  
t  coefficien Cosine

ectors         v          ors      vect                              

 term weighted       Formbinary teror          F                    

iiii

ii

t

i

ii

ii

yxyx

yx

xy

yx

I

I

I



7

Example – Binary Inner Product

t=5000

term 1  2  D  12  D  456  D  678  D  5000

Doc-1  0  1          0             1           0          0

Doc-2  1  1          1             0           1          1

...

Doc-N 0  1          0             1           1          0

Query  1  1          0             0           1          0

Applying the inner product of the query to doc1, doc2, and doc-N gives us 

1 for doc1, 2 for doc N, and 3 for doc 2.  

The ranked list is then document 2, N, and 1 with document 2 being the most relevant.

Example – Weighted Inner Product

Term  1     2  D  12  D456  D  678  D  5000

Doc-1 0     0.3     0        0.5          0            0

Doc-2 0.2  0.6     0.3     0            0.8         0.3

...

Doc-N 0     0.2    0        0            0.6         0            

Query  0.3  0.7    0        0            0.7         0

The relevance values in this case are calculated via:

For Doc-1  :  0.3*0 + 0.7*0.3 + 0.7*0 = 0.21 

For Doc-2  :  0.3*0.2 + 0.7*0.6 + 0.7*0.8 = 1.04 

For Doc-N :  0.3*0 + 0.7*0.2 + 0.7*0.6 = 0.56



8

Where do we get the weights?

• TF-IDF is a popular metric
– Term Frequency-Inverse Document Frequency

– Idea is to weight each term by
• A measure of recurrence

• A measure of term discrimination

• A normalization factor

– Assumes that the frequency of occurrence of a term or 
keyword within a document is an indicator of how 
relevant that term is.   However, if a term or keyword 
appears in many documents, then its predictive power 
is weak. 
• E.g. word “the” occurs a lot in one document, but it’s also in 
every single document, so it has a weak weighting

TF-IDF
• For each term, multiply the term-frequency (tf) 
by 1/document-frequency (idf or inverse 
document frequency) to obtain a metric of 
relevancy for each term. 

• Where:   ti = term t in document i

• tf(ti) = Number of occurrences of term t in 
document i

• df(t) = Number of documents containing term t

• N = Total number of documents









×=

)(
log)()(

tdf

�
ttftweight ii



9

TF-IDF Example
Doc 1:

artificial 2

intelligence 0

information 12

retrieval 10

mock 1

kenrick 2

the 35

Doc 2:

artificial 3

intelligence 5

information 5

retrieval 0

mock 3

kenrick 1

the 56

Doc 3:

artificial 0

intelligence 5

information 0

retrieval 0

mock 0

kenrick 0

the 42

From these frequencies we can construct tf-idf values for the terms in document 1:

Global

Document Freq:

artificial 2

intelligence 2

information 2

retrieval 1

mock 2

kenrick 2

the 3

Document 1 Freq:

artificial 2

intelligence 0

information 12

retrieval 10

mock 1

kenrick 2

the 35

TF-IDF Weights

2*log(3/2)=0.35

0*log(3/2)=0

12*log(3/2)=2.11

10*log(3/1)=4.77

1*log(3/2)=0.17

2*log(3/2)=0.53

35*log(3/3)=0









×=

)(
log)(

tdf

�
ttf i

Classification System

• Can apply same technique to a category

– Category is conglomeration of tf-idf vectors 

from multiple documents

Category Freq:

artificial 23

intelligence 33

retrieval 11

kenrick 2

salton 25

TF-IDF Weights

0.33

0.45

1.00

0.66

0.83

Doc 1:

artificial 10

intelligence 20

salton 10

kenrick 2

Doc 2:

artificial 13

intelligence 13

salton 15

retrieval 11



10

Positive Negative

Prediction + # True+ # False+

Prediction - # False - # True -

Confusion Matrix for Category Classification

Accuracy = (TP + TN) / (TN + TP + FN + FP)

Precision = TP / TP + FP

Recall = TP / TP + FN

Confusion Matrix for Junk Email Category

Positive Negative

Prediction + 34 2

Prediction - 10 103

Precision = 34 / 34 + 10 = 0.77

Recall = 34 / 34 + 2 = 0.94



11

0.5  
Recall

Precision

0.5
Broad terms

Narrow terms

Breakeven point, P=R

Our IR System

• Vectorize all documents to tf-idf values

• Vectorize the query to tf-idf values

• Compare query to all documents using one of the 
comparison metrics

• Sort results by relevancy

• BUT
– Comparing query to all documents is slow with large document 

sets

– Queries on the web are on average 2.3 words

– Use an inverted index for greater efficiency, an index on each 
word that tells us what documents contain that word



12

Inverted Indexing Example

• Objective

– Create a sorted list of words with 
pointers indicating which and where the 
words appear in the documents.

– We can then process the list in many 
different ways to meet the retrieval 
needs

Example 

• Document D1

– Title: Cats and dogs: Mortal enemies or simply 

misunderstood?

– Category: Cats; Dogs; Children Literature 

• Document D2

– Title : New methods of feeding cats and dogs

– Category : Cats; Dogs; Feeding behaviors;

• Document D3

– Title : I Love Hot Dogs

– Category : Children Literature; Stories; Food;



13

• Document D1

T: Cats and dogs: Mortal enemies or simply misunderstood?

1             2          3             4               5                 6

C: Cats; Dogs; Children Literature

1        2           3           4             

• Document D2

T : New methods of feeding cats and dogs

1           2            3           4            5

C : Cats; Dogs; Feeding behaviors;

1        2         3               4

• Document D3

T : I love hot dogs

1     2     3       

C : Children Literature ; Stories; Food;

1               2             3            4

Step 1: Number all the words in each field 

(exclude stop words)

Step 2: make a list of words with its pointers to 

its document number, its field, and its position

cats           D1T01

dogs          D1T02

mortal       D1T03

enemies     D1T04

simply       D1T05

misunderstood   D1T06

cats          D1C01

dogs          D1C02 

children    D1C03

literature   D1C04

new           D2T01new           D2T01

methods    D2T02methods    D2T02

feeding      D2T03feeding      D2T03

cats           D2T04cats           D2T04

dogs          D2T05dogs          D2T05

cats         D2C01cats         D2C01

dogs         D2C02 dogs         D2C02 

feeding     D2C03feeding     D2C03

behaviors  D2C04behaviors  D2C04

love           D3T01love           D3T01

hot             D3T02hot             D3T02

dogs          D3T03dogs          D3T03

children    D3C01children    D3C01

literature   D3C02 literature   D3C02 

stories       D3C03stories       D3C03

food          D3C04food          D3C04



14

Step 3: Merge and alphabetize the list

• behaviors  D2C04

• cats            D1T01, D2T04, D1C01, D2C01

• children     D1C03, D3C01

• dogs           D1C02, D1T02, D2T05, D3T03, D2C02 

• enemies     D1T04

• feeding      D2T03, D2C03

• food          D3C04

• hot             D3T02

• literature   D1C04, D3C02 

• love           D3T01

• methods    D2T02

• misunderstood  D1T06

• mortal       D1T03

• new           D2T01

• simply       D1T05

• stories       D3C03

Step 4: Query Evaluation
• Traverse lists for each query term

OR: the union of component lists

AND: an intersection of component lists

• Can use position for proximity

• Can also perform tf-idf style computations

if look up weights for terms in the doc

Queries:  

• cats AND feeding

D2:  Cat Term 1, 3;  Text Term 4

• mortal OR love

D3:  Text Term 1

D1:  Text Term 3

Inverted Index and TF-IDF

• Inverted indices form the basis for all search 

engines

• TF-IDF often used to compare query to a web 

document

– However, it doesn’t work too well comparing a short 

query to a longer document

• Vector model will favor very short documents that are the 

query plus a few words, since the vectors will be very similar 

(longer document has other terms that don’t match the query)

– ex. Microsoft =>  Microsoft sucks

– Proprietary techniques also used, e.g. PageRank, to 

supplement



15

Introduction To Anatomy of Google

• Most material from presentation “Anatomy of a Large-

Scale Hypertextual Web Search Engine” by Sergey Brin 

and Lawrence Page (1997)

• Flash Back to 1997

– Amount of information and new users inexperienced in the art of 

web research rapidly growing.

– People often starting with :

• High quality human maintained indices

– Effectively but subjective, expensive to build and maintain, slow to 

improve, and can’t cover all topics

• Keyword matching 

– Return too many low quality matches

– It’s necessary to build a large scale search engine

• Large especially heavy use

• Provide higher quality search results

Introduction (cont.)

• Web Search Engines--Scaling UP:1994-2000

– Technology should scale to keep up with growth of  web.

– In 1994(WWWW, World Wide Web Worm):

• Had index of 110,000 pages.

• Receive 1500 queries per day.

– In 1997(WebCrawler):

• Claim to index from 2 to 100 million web pages

• Altavista handled 20 million queries per day

– Forecast in 2000

• Index of Web will contain over a billion document

• Hundreds of millions of queries per day.

– Address Quality and Scalability problem

– In 11/2009

• ~22.5 billion pages index in Google



16

Introduction (cont.)

• Google:Scaling with the Web

– Common spelling of “Googol ” or 10^100 

– Creating scalable search engine may face some 

problem:

• Fast crawling technology:gather pages and keep them up to 

date

• Storage space:used efficiently to store indices and pages.

• Index System:process hundreds of gigabytes of data 

efficiently

• Handle queries quickly

– Designed to scale well to extremely large data sets:

• Efficient use of storage space to store the index.

• Data structures are optimized for fast and efficient access.

• Expect the cost to index and store may decline.

Design Goals

• Improved search quality

– In 1994, complete search index is enough

– In 1997, “Junk results” becomes serious problem 

– Number of pages increase, but user’s ability not.

– We want to get high precision, even at expense of 

recall.

– The use of hypertextual information can help improve 

search and other application.

– Google makes use of both link structure and anchor 

text.



17

System Features

• PageRank: Use Link Structure

– Created maps containing 518 million of hyperlinks

– Considered two points:

• Citation importance

• People’s subjective idea of importance.

– Page Rank is an excellent way to prioritize the results 

of web keyword search.

– Calculation:

• PR(A)=(1-d)+d[PR(T1)/C(T1)+..+PR(Tn/C(Tn)]

– d usually sets 0.85

– use a simple iterative algorithm, and correspond to the principal 

eigenvector of normalized link matrix.

System Features(cont.)

– Intuitive Justification for PageRank

• Damping Factor:

– d is called damping factor, it means the probability at 

each page the “random surfer”

– Can only add the damping factor d to a single page or a 

group of pages, and this allows for personalization.

• Citation Concept:

– A page can have high page rank if there are many pages 

that point to it, or if there are some pages that point to it 

and have a high rank.



18

How PageRank is calculated ?

• PR(A) is the PageRank of Page A 

• d is a dampening factor(0-1). Nominally this is set to 0.85 

• PR(T1) is the PageRank of a site pointing to Page A 

• C(T1) is the number of links off that page 

• PR(Tn)/C(Tn) means we do that for each page pointing to 
Page A

• Minimum: 1-d     Maximum: (1-d)+dN

PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn))

PageRank Calculator:

http://www.markhorrell.com/seo/pagerank.asp

The Iterative Computation of PageRank

PR(A) = (1-0.85) + 0.85 (PR(C) / 2)

PR(B) = (1-0.85) + 0.85 (PR(A) / 2 + 
PR(C)/2)

PR(C) = (1-0.85) + 0.85 (PR(A) / 2 + 
PR(B)/1)

(PR : 1     d : 0.85 )

AA

BB CC

Iteration PR(A)           PR(B) PR(C)

0 1 1 1

1 0.15+0.85(1/2) 0.15+0.85(1/2+1/2) 0.15+0.85(1/2+1)

= 0.575 =1 = 1.425

2 0.15+0.85(1.425/2) 0.15+0.85(.575/2+1.425/2) 0.15+0.85(.575/2+1)

= 0.756 =1 = 1.244

28  = 0.702 =1  =1.298245614 

29  = 0.702 =1  =1.298245614 

D



19

Page A = 1.4594595

Page B = 0.7702703

Page C = 0.7702703

Internal Structures and Linkages

AA

BB CC

AA

BB CC

AA

BB CC

Page A = 1 

Page B = 1

Page C = 1

Page A = 1 

Page B = 1

Page C = 1

(Hierarchical) (Looping) (Interlinking)

Link exchange(1)

AA

BB CC

DD

EE FF

Page A = 1.4594595

Page B = 0.7702703

Page C = 0.7702703

Page D = 1.4594595

Page E = 0.7702703

Page F = 0.7702703

Page A = 1.7234043

Page B = 0.6382979

Page C = 0.6382979

Page D = 1.7234043

Page E = 0.6382979

Page F = 0.6382979

Total PR: 3.0

Total PR: 3.0Total PR: 3.0

Total PR: 3.0



20

Link exchange(2)

AA

BB CC

DD

EE FF

AA

BB CC

DD

EE FF

AA

BB CC

DD

EE FF

Page A = 1.8623058 Page D = 1.3183416

Page B = 0.6776533 Page E = 0.7537509

Page C = 0.6776533 Page F = 0.7102952

Total PR: 3.2176124 Total PR: 2.7823877

Page A = 1.4934575 Page D = 1.1675242

Page B = 0.9967762 Page E = 0.6992681

Page C = 0.9967762 Page F = 0.6461978

Total PR: 3.4870099 Total PR: 2.5129901

Page A = 1.3913813 Page D = 1.5419126

Page B = 0.9464778 Page E = 0.5868752

Page C = 0.9464778 Page F = 0.5868752

Total PR: 3.2843369 Total PR: 2.7156630

Penalty

Google wants to penalize a page--it is assigned a 
PageRank of zero. 

•Spam(i.e., excessive repetition of keywords, same 
color text as background, deceptive or misleading links)

•Link farms(Reciprocal Link)



21

In Practice

• PageLink enhanced to allow retrieval of pages that are ranked 

highly if search keywords found on citation pages but not on target 

page

• Googlebomb

– A user registers many domains and all of them link to their main site to 

influence google pagerank

– Adam Mathes made “talentless hack” refer to his friend Andy Pressman;  

“more evil than Satan” refer to Microsoft

– Ends when/if news media picks up and writes stories

query = “living legend”

living legend

living legendliving legend

living legend

hits

no keyword hit

but google allows it to be

retrieved since pages hit

all refer to it

System Features(cont.)

• Anchor Text

– The text of links is treated in a special way.

– We associate anchor text with the page the 

link points to 

• It often provides more accurate descriptions of web 

pages

• Exists when pages can’t be indexed by text-based 

search engine

– In 24 million pages, we had over 259 million 

anchors which we indexed.



22

System Features(cont.)

• Other features:

– It has location information for all hits and so it 

makes extensive use of proximity in search.

– Keep track of some visual presentation details

– Full raw HTML of pages is available in a 

repository.

Related Work

• Information Retrieval

– IR system is on small well controlled homogeneous 

collections such as scientific papers or news.

• TREC takes 20GB as their benchmark compared to 147GB.

– Things that work well on TREC don’t produce good 

results on the web

• Vector model will return very short document that are the 

query plus a few word

– ex.Bill Clinton=>Bill Clinton sucks

• They claimed that users should specify more accurately 

query.

– We claim that user can get reasonable number and 

quality results for any precision or simple queries.



23

System Anatomy

• Google Architecture Overview:Figure 1

• Major Data Structure

– Big Files:Virtual files spanning multiple file system

– Repository:figure 2

• use zlib (3:1) to compress

– Document Index:Keep information about each 

documents

• Add link to link list

• Convert URLs into docIDs

– Lexicon: figure 3

– Hit Lists:a list of occurrences of a particular word in a 

particular document

docIDs 

Partially sorted buckets of hits 

URLs�docIDs

Sort by wordID for

inverted index



24

Document Index

• The document index keeps information about each 
document. It is a fixed width ISAM (Index sequential 
access mode) index, ordered by docID. 
– Document status

– Pointer to the repository

– Checksum

– Document statistics

• File to convert URLs into docIDs
– List of URL checksums with corresponding docIDs sorted by 

checksum

– To find the docID of an URL, the URL’s checksum is computed 
and binary search performed on checksum file



25

Hit List
• A hit list corresponds to a list of occurrences of a 
particular word in a particular document 
including position, font, and capitalization

• Takes up most of the space in the inverted index

• Compact encoding uses two bytes for every hit
– Fancy hits 

• Hits in an URL, title, anchor text, or meta tag

– Plain hits
• Hits in everything else

Capitalized

Font, 111 for fancy format

Index in text,

clipped at 4096

Hash to docID, limited

phrase searching

Forward Barrels

• Barrels of documents and list of hits for that 

document

– Used 64 barrels

Partially sorted – Barrels assigned a range of wordid’s.

This means that one docid may be replicated in multiple barrels.



26

Inverted Index

• The inverted index consists of the same barrels as the 
forward index, except that they have been processed by 
the sorter. 
– For every valid wordID, the lexicon contains a pointer into the barrel 

that wordID falls into. It points to a doclist of docID’s together with 
their corresponding hit lists. 

– This doclist represents all the occurrences of that word in all 
documents.

• Actually keep two sets of inverted barrels
– Small barrels set include title or anchor hits and larger set for all hit 

lists. 

– Check the small set of barrels first and if there are not enough 
matches within those barrels we check the larger ones.

System Anatomy(cont.)

• Indexing the Web

– Parsing

– Indexing Documents into Barrels

– Sorting

• Searching

– The goal of searching is to provide quality search 

results efficiently.

– Query Evaluation, figure 4

– To put a limit on response time, only found 40,000 

pages, so sub-optimal results may be returned.



27

Figure 4

1. Parse the query.

2. Convert words into wordIDs.

3. Seek to the start of the doclist in the short barrel for every word.

4. Scan through the doclists until there is a document that matches all the search terms.

5. Compute the rank of that document for the query.

6. If we are in the short barrels and at the end of any doclist, seek to the start of the

doclist in the full barrel for every word and go to step 4.

7. If we are not at the end of any doclist go to step 4.

 Sort the documents that have matched by rank and return the top k.

Figure 4. Google Query Evaluation

System Anatomy(cont.)

– The Ranking System

• Google maintains much more information about 

web documents

– Hitlist includes position, font, and capitalization

– Anchor text

• For single word search:

– Give different type (ex.title, URL, anchor) different weight

– Count the word weight and sum to IR score

• For multi word search:

– Besides type, the hits occurs close together are weighted 

higher than hits occur far apart.

• Feedback:Use users’ feedback to judge the weight 

parameter in the system



28

Results

• Google produce better results than 

commercial search engine.

– Figure 5

– The result show the feature of Google

• Good result quality and no broken links

• Anchor Text based(ex. E-mail can be shown)

• No results about a Bill other than Clinton or about 

a Clinton other than Bill

– Storage Requirement:Table1

Query: bill clinton

http://www.whitehouse.gov/

100.00%  (no date) (0K)

http://www.whitehouse.gov/

      Office of the President

        99.67% (Dec 23 1996) (2K)

        http://www.whitehouse.gov/WH/EOP/OP/html/OP_Home.html

      Welcome To The White House

        99.98%  (Nov 09 1997) (5K)

        http://www.whitehouse.gov/WH/Welcome.html

      Send Electronic Mail to the President

        99.86%  (Jul 14 1997) (5K)

        http://www.whitehouse.gov/WH/Mail/html/Mail_President.html

mailto:president@whitehouse.gov

99.98%

      mailto:President@whitehouse.gov

        99.27%

The "Unofficial" Bill Clinton

94.06% (Nov 11 1997) (14K)

http://zpub.com/un/un-bc.html

       Bill Clinton Meets The Shrinks

         86.27%  (Jun 29 1997) (63K)

         http://zpub.com/un/un-bc9.htm

President Bill Clinton - The Dark Side

97.27%  (Nov 10 1997) (15K)

http://www.realchange.org/clinton.htm

$3 Bill Clinton

94.73%  (no date) (4K)

 http://www.gatewy.net/~tjohnson/clinton1.html

Figure 5. Sample Results from Google



29

Table 1

Storage Statistics

Total Size of Fetched Pages 147.8 GB

Compressed Repository 53.5 GB

Short Inverted Index 4.1 GB

Full Inverted Index 37.2 GB

Lexicon 293 MB

Temporary Anchor Data (not in total) 6.6 GB

Document Index Incl. Variable Width Data 9.7 GB

Links Database 3.9 GB

Total Without Repository 55.2 GB

Total With Repository 108.7gb

Web Page Statistics

Number of Web Pages Fetched 24 million

Number of Urls Seen 76.5 million

Number of Email Addresses 1.7 million

Number of 404's 1.6 million

Performance

• System performance:9 days to download 

26 million pages(worse case)

• Search Performance:

– query time range from 1 to 10 sec.

– Time is mostly dominated by disk IO over 

NFS

– Table 2



30

Table 2

Initial Query Same Query Repeated (IO mostly cached)

Query CPU Time(s) Total Time(s) CPU Time(s) Total Time(s)

al gore 0.09 2.13 0.06 0.06

vice president 1.77 3.84 1.66 1.80

hard disks 0.25 4.86 0.20 0.24

search engines 1.31 9.63 1.16 1.16

Conclusion

• Google has some features:

– Is suited for large-scale web environment.

– Can provide high quality results.

• Future Work

– Intelligent update algorithm

– Other scalable methods

– Other weighting techniques

• Add weight to page in bookmarks in order to 

construct personal web


