
1

Introduction to UML

CS A401

What is UML?

• Unified Modeling Language

– OMG Standard, Object Management Group

– Based on work from Booch, Rumbaugh, Jacobson

• UML is a modeling language to express and
design documents, software

– Particularly useful for OO design

– Not a process, but some have been proposed using
UML

– Independent of implementation language

2

Why use UML

• Open Standard, Graphical notation for
– Specifying, visualizing, constructing, and documenting software
systems

• Language can be used from general initial design to very
specific detailed design across the entire software
development lifecycle

• Increase understanding/communication of product to
customers and developers

• Support for diverse application areas

• Support for UML in many software packages today (e.g.
Rational, plugins for popular IDE’s like NetBeans, Eclipse)

• Based upon experience and needs of the user community

Brief History

• Inundated with methodologies in early 90’s

– Booch, Jacobson, Yourden, Rumbaugh

• Booch, Jacobson merged methods 1994

• Rumbaugh joined 1995

• 1997 UML 1.1 from OMG includes input from

others, e.g. Yourden

• UML v2.0 current version

3

History of UML

Contributions to UML

4

Systems, Models and Views

• A model is an abstraction describing a subset of a system

• A view depicts selected aspects of a model

• A notation is a set of graphical or textual rules for

depicting views

• Views and models of a single system may overlap each

other

Examples:

• System: Aircraft

• Models: Flight simulator, scale model

• Views: All blueprints, electrical wiring, fuel system

Systems, Models and Views

System
View 1

Model 2

View 2

View 3

Model 1

Aircraft

Flightsimulator

Scale Model

Blueprints

Electrical

Wiring

5

UML Models, Views, Diagrams

• UML is a multi-diagrammatic language
– Each diagram is a view into a model

• Diagram presented from the aspect of a particular stakeholder

• Provides a partial representation of the system

• Is semantically consistent with other views

– Example views

Models, Views, Diagrams

6

How Many Views?

• Views should to fit the context

– Not all systems require all views

– Single processor: drop deployment view

– Single process: drop process view

– Very small program: drop implementation view

• A system might need additional views

– Data view, security view, …

UML: First Pass

• You can model 80% of most problems by

using about 20 % UML

• We only cover the 20% here

7

Basic Modeling Steps

• Use Cases

– Capture requirements

• Domain Model

– Capture process, key classes

• Design Model

– Capture details and behaviors of use cases and
domain objects

– Add classes that do the work and define the
architecture

UML Baseline

• Use Case Diagrams

• Class Diagrams

• Package Diagrams

• Interaction Diagrams

– Sequence

– Collaboration

• Activity Diagrams

• State Transition Diagrams

• Deployment Diagrams

8

Use Case Diagrams

• Used during requirements

elicitation to represent external

behavior

• Actors represent roles, that is, a

type of user of the system

• Use cases represent a sequence of

interaction for a type of

functionality; summary of

scenarios

• The use case model is the set of

all use cases. It is a complete

description of the functionality of

the system and its environment

Passenger

PurchaseTicket

Actors

• An actor models an external entity

which communicates with the system:

– User

– External system

– Physical environment

• An actor has a unique name and an

optional description.

• Examples:

– Passenger: A person in the train

– GPS satellite: Provides the system with

GPS coordinates

Passenger

9

Use Case

A use case represents a class of

functionality provided by the

system as an event flow.

A use case consists of:

• Unique name

• Participating actors

• Entry conditions

• Flow of events

• Exit conditions

• Special requirements

PurchaseTicket

Use Case Diagram: Example

�ame: Purchase ticket

Participating actor: Passenger

Entry condition:

• Passenger standing in front of

ticket distributor.

• Passenger has sufficient money

to purchase ticket.

Exit condition:

• Passenger has ticket.

Event flow:

1. Passenger selects the number of

zones to be traveled.

2. Distributor displays the amount

due.

3. Passenger inserts money, of at

least the amount due.

4. Distributor returns change.

5. Distributor issues ticket.

Anything missing?

Exceptional cases!

10

The <<extends>> Relationship
• <<extends>> relationships represent

exceptional or seldom invoked cases.

• The exceptional event flows are

factored out of the main event flow for

clarity.

• Use cases representing exceptional

flows can extend more than one use

case.

• The direction of a <<extends>>

relationship is to the extended use case

Passenger

PurchaseTicket

TimeOut

<<extends>>

NoChange

<<extends>>OutOfOrder

<<extends>>

Cancel

<<extends>>

The <<includes>> Relationship
• <<includes>> relationship

represents behavior that is

factored out of the use case.

• <<includes>> behavior is factored

out for reuse, not because it is an

exception.

• The direction of a <<includes>>

relationship is to the using use

case (unlike <<extends>>

relationships).

Passenger

PurchaseSingleTicket

PurchaseMultiCard

NoChange

<<extends>>

Cancel

<<extends>>

<<includes>>

CollectMoney

<<includes>>

11

Use Cases are useful to…

• Determining requirements

– New use cases often generate new requirements as the

system is analyzed and the design takes shape.

• Communicating with clients

– Their notational simplicity makes use case diagrams a good

way for developers to communicate with clients.

• Generating test cases

– The collection of scenarios for a use case may suggest a

suite of test cases for those scenarios.

Use Case Diagrams: Summary

• Use case diagrams represent external behavior

• Use case diagrams are useful as an index into

the use cases

• Use case descriptions provide meat of model,

not the use case diagrams.

• All use cases need to be described for the

model to be useful.

12

Class Diagrams

• Gives an overview of a system by showing its
classes and the relationships among them.

– Class diagrams are static

– they display what interacts but not what happens
when they do interact

• Also shows attributes and operations of each
class

• Good way to describe the overall architecture
of system components

Class Diagram Perspectives

• We draw Class Diagrams under three

perspectives

– Conceptual

• Software independent

• Language independent

– Specification

• Focus on the interfaces of the software

– Implementation

• Focus on the implementation of the software

13

Classes – Not Just for Code

• A class represent a concept

• A class encapsulates state (attributes) and behavior
(operations).

• Each attribute has a type.

• Each operation has a signature.

• The class name is the only mandatory information.

zone2price

getZones()

getPrice()

TariffSchedule

Table zone2price

Enumeration getZones()

Price getPrice(Zone)

TariffSchedule

Name

Attributes

Operations

Signature

TariffSchedule

Instances

• An instance represents a phenomenon.

• The name of an instance is underlined and can

contain the class of the instance.

• The attributes are represented with their values.

zone2price = {

{‘1’, .20},

{‘2’, .40},

{‘3’, .60}}

tarif_1974:TariffSchedule

14

UML Class Notation

• A class is a rectangle divided into three parts
– Class name

– Class attributes (i.e. data members, variables)

– Class operations (i.e. methods)

• Modifiers
– Private: -

– Public: +

– Protected: #

– Static: Underlined (i.e. shared among all members of the class)

• Abstract class: Name in italics

UML Class Notation

• Lines or arrows between classes indicate relationships
– Association

• A relationship between instances of two classes, where one class must know
about the other to do its work, e.g. client communicates to server

• indicated by a straight line or arrow

– Aggregation
• An association where one class belongs to a collection, e.g. instructor part of
Faculty

• Indicated by an empty diamond on the side of the collection

– Composition
• Strong form of Aggregation

• Lifetime control; components cannot exist without the aggregate

• Indicated by a solid diamond on the side of the collection

– Inheritance
• An inheritance link indicating one class a superclass relationship, e.g. bird is
part of mammal

• Indicated by triangle pointing to superclass

15

Binary Association

myB.service(); myA.doSomething();

Binary Association: Both entities “Know About” each other

Optionally, may create an Associate Class

Unary Association

A knows about B, but B knows nothing about A

Arrow points in direction

of the dependency

myB.service();

16

Aggregation

Aggregation is an association with a “collection-member” relationship

void doSomething()

aModule.service();

Hollow diamond on

the Collection side

No sole ownership implied

Composition

Composition is Aggregation with:

Lifetime Control (owner controls construction, destruction)

Part object may belong to only one whole object

Filled diamond on

side of the Collection

members[0] =

new Employee();

…

delete members[0];

17

Inheritance

Standard concept of inheritance

class B() extends A

…

Base Class

Derived Class

UML Multiplicities

Multiplicities Meaning

0..1
zero or one instance. The notation n . . m

indicates n to m instances.

0..* or *
no limit on the number of instances

(including none).

1 exactly one instance

1..* at least one instance

Links on associations to specify more details about the relationship

18

UML Class Example

Association Details

• Can assign names to the ends of the

association to give further information

+getName() : string
+setName()
-calcInternalStuff(in x : byte, in y : decimal)

-Name : string
+ID : long
#Salary : double
-adfaf : bool

Employee

-members : Employee

Team -group

1

-individual

*

19

Static vs. Dynamic Design

• Static design describes code structure and object
relations
– Class relations

– Objects at design time

– Doesn’t change

• Dynamic design shows communication between
objects
– Similarity to class relations

– Can follow sequences of events

– May change depending upon execution scenario

– Called Object Diagrams

Object Diagrams

• Shows instances of Class Diagrams and links

among them

– An object diagram is a snapshot of the objects in a

system

• At a point in time

• With a selected focus

– Interactions – Sequence diagram

– Message passing – Collaboration diagram

– Operation – Deployment diagram

20

Object Diagrams

• Format is

– Instance name : Class name

– Attributes and Values

– Example:

Objects and Links

Can add association type and also message type

21

Package Diagrams

• To organize complex class diagrams, you can group
classes into packages. A package is a collection of
logically related UML elements

• Notation

– Packages appear as rectangles with small tabs at the top.

– The package name is on the tab or inside the rectangle.

– The dotted arrows are dependencies. One package depends
on another if changes in the other could possibly force
changes in the first.

– Packages are the basic grouping construct with which you
may organize UML models to increase their readability

Package Example

DispatcherInterface

Notification IncidentManagement

22

More Package Examples

Interaction Diagrams

• Interaction diagrams are dynamic -- they

describe how objects collaborate.

• A Sequence Diagram:

– Indicates what messages are sent and when

– Time progresses from top to bottom

– Objects involved are listed left to right

– Messages are sent left to right between objects in

sequence

23

Sequence Diagram Format

Actor from

Use Case Objects

1

2
3

4

Lifeline Calls = Solid Lines

Returns = Dashed Lines

Activation

Sequence Diagram : Destruction

Shows Destruction of b

(and Construction)

24

Sequence Diagram : Timing

Slanted Lines show propagation delay of messages

Good for modeling real-time systems

If messages cross this is usually problematic – race conditions

Sequence Example: Alarm System

• When the alarm goes off, it rings the alarm, puts a
message on the display, notifies the monitoring
service

25

Sequence Diagram Example
Hotel Reservation

Collaboration Diagram

• Collaboration Diagrams show similar information to

sequence diagrams, except that the vertical sequence

is missing. In its place are:

– Object Links - solid lines between the objects that interact

– On the links are Messages - arrows with one or more

message name that show the direction and names of the

messages sent between objects

• Emphasis on static links as opposed to sequence in

the sequence diagram

26

Collaboration Diagram

Activity Diagrams

• Fancy flowchart
– Displays the flow of activities involved in a single process

– States
• Describe what is being processed

• Indicated by boxes with rounded corners

– Swim lanes
• Indicates which object is responsible for what activity

– Branch
• Transition that branch

• Indicated by a diamond

– Fork
• Transition forking into parallel activities

• Indicated by solid bars

– Start and End

27

Sample Activity Diagram

• Ordering System

• May need multiple

diagrams from other

points of view

Activity Diagram Example

28

State Transition Diagrams

• Fancy version of a DFA

• Shows the possible states of the object and the
transitions that cause a change in state
– i.e. how incoming calls change the state

• Notation
– States are rounded rectangles

– Transitions are arrows from one state to another. Events or
conditions that trigger transitions are written beside the
arrows.

– Initial and Final States indicated by circles as in the
Activity Diagram
• Final state terminates the action; may have multiple final states

State Representation

• The set of properties and values describing the object

in a well defined instant are characterized by

– Name

– Activities (executed inside the state)

• Do/ activity

– Actions (executed at state entry or exit)

• Entry/ action

• Exit/ action

– Actions executed due to an event

• Event [Condition] / Action ^Send Event

29

Notation for States

Simple Transition Example

30

More Simple State Examples

State Transition Example

Validating PIN/SSN

31

State Charts – Local Variables

• State Diagrams can also store their own local

variables, do processing on them

• Library example counting books checked out

and returned

Component Diagrams

• Shows various components in a system and their

dependencies, interfaces

• Explains the structure of a system

• Usually a physical collection of classes

– Similar to a Package Diagram in that both are used to group

elements into logical structures

– With Component Diagrams all of the model elements are

private with a public interface whereas Package diagrams

only display public items.

32

Component Diagram Notation

• Components are shown as rectangles with two

tabs at the upper left

• Dashed arrows indicate dependencies

• Circle and solid line indicates an interface to

the component

Component Example - Interfaces

• Restaurant
ordering
system

• Define
interfaces
first –
comes
from Class
Diagrams

33

Component Example - Components

• Graphical depiction of components

Component Example - Linking

• Linking components with dependencies

34

Deployment Diagrams

• Shows the physical architecture of the hardware and

software of the deployed system

• Nodes

– Typically contain components or packages

– Usually some kind of computational unit; e.g. machine or

device (physical or logical)

• Physical relationships among software and hardware

in a delivered systems

– Explains how a system interacts with the external

environment

Some Deployment Examples

35

Deployment Example

Often the Component Diagram is combined with the Deployment

Summary and Tools

• UML is a modeling language that can be used independent of
development

• Adopted by OMG and notation of choice for visual modeling
– http://www.omg.org/uml/

• Creating and modifying UML diagrams can be labor and time
intensive.

• Lots of tools exist to help
– Tools help keep diagrams, code in sync

– Repository for a complete software development project

– Examples here created with TogetherSoft ControlCenter, Microsoft
Visio, Tablet UML

– Other tools:

• Rational, Cetus, Embarcadero

• See http://plg.uwaterloo.ca/~migod/uml.html for a list of tools, some free

