Introduction to UML

CS A401

What is UML?

» Unified Modeling Language
— OMG Standard, Object Management Group
— Based on work from Booch, Rumbaugh, Jacobson
« UML is a modeling language to express and
design documents, software
— Particularly useful for OO design

— Not a process, but some have been proposed using
UML

— Independent of implementation language

Why use UML

Open Standard, Graphical notation for

— Specifying, visualizing, constructing, and documenting software
systems

Language can be used from general initial design to very
specific detailed design across the entire software
development lifecycle

Increase understanding/communication of product to
customers and developers

Support for diverse application areas

Support for UML in many software packages today (e.g.
Rational, plugins for popular IDE’s like NetBeans, Eclipse)

Based upon experience and needs of the user community

Brief History

Inundated with methodologies in early 90’s
— Booch, Jacobson, Yourden, Rumbaugh

Booch, Jacobson merged methods 1994
Rumbaugh joined 1995

1997 UML 1.1 from OMG includes input from
others, e.g. Yourden

UML v2.0 current version

History of UML

UML20Q 7]
+
UML 1.4
4 industrialization
——"
? revision L
ANGUAE:
OMG Acceptance, Nov 1997 UML 1.1 e
Final submission to OMG, Sep ‘97
First submission to OMG, Jan 97 standardization
UML partners umMmL10
A
Web - June 96 -+ UML 0.9

OOPSLA "95 ———————z*———— |Jnified Method 0.8

Other methods | Booch OOAD OoMT O0OSE

Contributions to UML

Harel
Meyer Gamma, et al

Statecharts

Before and after
conditions

Frameworks and patterns,

HP Fusion
Booch
Operation descriptions and

O0A&D \ / message numbering
UNIFIED o

Embley

Rumbaugh el I ODELING €
OMT LANGUAGE Singleton classes and
high-level view

Jacobson / \ Wirfs-Brock
00SE Responsibilities
Shiaer - Mellor Odell

Object lifecycles Classification

Systems, Models and Views

* A model is an abstraction describing a subset of a system

* A view depicts selected aspects of a model

* A notation is a set of graphical or textual rules for
depicting views

» Views and models of a single system may overlap each
other

Examples:
» System: Aircraft
* Models: Flight simulator, scale model

* Views: All blueprints, electrical wiring, fuel system

Systems, Models and Views

Flightsimulator

Electrical
Wiring

. >
Scale Model

UML Models, Views, Diagrams

« UML is a multi-diagrammatic language

— Each diagram is a view into a model
* Diagram presented from the aspect of a particular stakeholder
* Provides a partial representation of the system
* Is semantically consistent with other views

— Example views

Logical View Implementation View

Programmers
Software management

End-user
Functionality

Use Case
View

Process View Deployment View
System integrators System engineering
Performance System topology
Scalability Delivery, installation
Throughput Communication

Models, Views, Diagrams

Static views

F‘ﬂ Class —
Diag

Use Case

- Object

?fquance Diagrars Diagrams

il_‘
Collaboration Component
Diagrams Diagrams
Statechart
Diagrams

Dynamic views

How Many Views?

* Views should to fit the context

— Not all systems require all views

— Single processor: drop deployment view

— Single process: drop process view

— Very small program: drop implementation view
» A system might need additional views

— Data view, security view, ...

UML: First Pass

* You can model 80% of most problems by
using about 20 % UML

* We only cover the 20% here

Basic Modeling Steps

» Use Cases
— Capture requirements
 Domain Model

— Capture process, key classes

» Design Model

— Capture details and behaviors of use cases and
domain objects

— Add classes that do the work and define the
architecture

UML Baseline

» Use Case Diagrams
 Class Diagrams
» Package Diagrams

* Interaction Diagrams
— Sequence
— Collaboration

 Activity Diagrams
+ State Transition Diagrams
* Deployment Diagrams

Use Case Diagrams

Passenger

\
C_O

PurchaseTicket

Used during requirements
elicitation to represent external
behavior

Actors represent roles, that is, a
type of user of the system

Use cases represent a sequence of
interaction for a type of
functionality; summary of
scenarios

The use case model is the set of
all use cases. It is a complete
description of the functionality of
the system and its environment

Actors

* An actor models an external entity
which communicates with the system:

— User

— External system
Passenger — Physical environment

* An actor has a unique name and an
optional description.

+ Examples:

— Passenger: A person in the train

— GPS satellite: Provides the system with
GPS coordinates

Use Case

A use case represents a class of

C_ >

functionality provided by the
system as an event flow.

PurchaseTicket A use case consists of:

Unique name
Participating actors
Entry conditions
Flow of events
Exit conditions

Special requirements

Use Case Diagram: Example

Name: Purchase ticket

Event flow:
1. Passenger selects the number of

Participating actor: Passenger zones to be traveled.

Entry condition:

« Passenger standing in front of

ticket distributor.

+ Passenger has sufficient money

to purchase ticket.

Exit condition:
» Passenger has ticket.

2. Distributor displays the amount
due.

3. Passenger inserts money, of at
least the amount due.

4. Distributor returns change.
5. Distributor issues ticket.

Anything missing?

Exceptional cases!

The <<extends>> Relationship

X

Passenger

|
D

+ <<extends>> relationships represent
exceptional or seldom invoked cases.

» The exceptional event flows are
factored out of the main event flow for
clarity.

» Use cases representing exceptional
flows can extend more than one use

PurchaseTicket case.

<<extends>>

O <<extends>

The direction of a <<extends>>
relationship is to the extended use case

<<extends>> Q

OutOfOrder <<extends>> TimeOut

Cancel

>

NoChange

The <<includes>> Relationship

X

Passenger \
l

PurchaseSmgleTlcket

<<|ncludes>>

* <<includes>> relationship
represents behavior that is
factored out of the use case.

» <<includes>> behavior is factored
out for reuse, not because it is an

PurchaseMthCard exception.
* The direction of a <<includes>>
<<includes>> relationship is to the using use
case (unlike <<extends>>
relationships).

ColIectMoney

<<extends>y7

>

NoChange

\<<extends>>

>

Cancel

10

Use Cases are useful to...

* Determining requirements

— New use cases often generate new requirements as the
system is analyzed and the design takes shape.

* Communicating with clients

— Their notational simplicity makes use case diagrams a good
way for developers to communicate with clients.

» Generating test cases

— The collection of scenarios for a use case may suggest a
suite of test cases for those scenarios.

Use Case Diagrams: Summary

» Use case diagrams represent external behavior

» Use case diagrams are useful as an index into
the use cases

» Use case descriptions provide meat of model,
not the use case diagrams.

e All use cases need to be described for the
model to be useful.

11

Class Diagrams

» Gives an overview of a system by showing its
classes and the relationships among them.

— Class diagrams are static

— they display what interacts but not what happens
when they do interact

» Also shows attributes and operations of each
class

* Good way to describe the overall architecture
of system components

Class Diagram Perspectives

» We draw Class Diagrams under three
perspectives
— Conceptual

* Software independent
 Language independent

— Specification
» Focus on the interfaces of the software
— Implementation

* Focus on the implementation of the software

12

Classes — Not Just for Code

TariffSchedule

Table zone2price

Enumeration getZones()
Price getPrice(Zone)

TariffSchedule
zone2price
getZones()

Signature

getPrice()

Operations TariffSchedule

i

A class represent a concept

A class encapsulates state (attributes) and behavior
(operations).

Each attribute has a type.
Each operation has a signature.
The class name is the only mandatory information.

Instances

tarif 1974:TariffSchedule
zone2price = {
{1°, .20},
{‘2’, .40},
{3’,.60}}

* An instance represents a phenomenon.

e The name of an instance is underlined and can
contain the class of the instance.

 The attributes are represented with their values.

13

UML Class Notation

* A class is a rectangle divided into three parts

— Class name

— Class attributes (i.e. data members, variables)

— Class operations (i.e. methods)
* Modifiers

— Private: -

— Public: +

— Protected: #

— Static: Underlined (i.e. shared among all members of the class)
e Abstract class: Name in italics

Employee

-Name : string

+ID : long

#Salary : double

+getName() : string

+setName()

-calcinternalStuff(in x : byte, iny : decimal)

UML Class Notation

» Lines or arrows between classes indicate relationships
— Association

* A relationship between instances of two classes, where one class must know
about the other to do its work, e.g. client communicates to server

+ indicated by a straight line or arrow
— Aggregation
* An association where one class belongs to a collection, e.g. instructor part of
Faculty
* Indicated by an empty diamond on the side of the collection
— Composition
 Strong form of Aggregation
+ Lifetime control; components cannot exist without the aggregate
* Indicated by a solid diamond on the side of the collection
— Inheritance

* An inheritance link indicating one class a superclass relationship, e.g. bird is
part of mammal

+ Indicated by triangle pointing to superclass

14

Binary Association

Binary Association: Both entities “Know About” each other

A

-myB: B
+tdoSomething ()
7

myB.service();

-myA: A

+oparation ()
+service ()

myA.doSomething();

Optionally, may create an Associate Class

Unary Association

A knows about B, but B knows nothing about A

A

B

myB: B¥

+doSomething ()

myB.service();

tservice ()

Arrow points in direction
of the dependency

15

Aggregation

Crate

-alModule:

Module®
+doSomething ()

Aggregation is an association with a “collection-member” relationship
Module

+service ()
\

void doSomething()
aModule.service();

Hollow diamond on

the Collection side

No sole ownership implied

Composition

Composition is Aggregation with:

Team

Part object may belong to only one whole object

-members : Employee

Lifetime Control (owner controls construction, destruction)

members[0] =

new Employee();

delete members[0];

Employee
-Name : string
+ID : long
#Salary : double
N -adfaf : bool

+getName() : string
+setName()

-calcinternalStuff(in x : byte, in y : decimal)

\Filled diamond on

side of the Collection

16

Inheritance

Standard concept of inheritance

A

-myX: double v~

+setX (:double) ™
+getX(): double IBase (jlaSS

|

+operation ()

A

" Derived Class

class B() extends A J

UML Multiplicities

Links on associations to specify more details about the relationship

Multiplicities Meaning

0.1 zero or one instance. The notation n. . m
* indicates n to m instances.

0% op * no limit on the number of instances
" (including none).

1 exactly one instance

1..* at least one instance

17

UML Class Example

Customer Order
name 1 0.7 | date
address status
association ~ caleTax
) calcTotal
—» Payment -
abstract class ¥ 1 J 1 calcTataheight
amaunt 1
role name —
neralization __
s ,% lineitern [1.7 €—
[[| OrderDetail
Credit Cash Check]
quantity
number cashTendered name taxstatus
type hankiD
expDate calcSubTotal
authorized calceight
authorized

\
/
v \
0r

_multipticity

tem <«

shippinoveight

\

description

getPriceF orGuantity

getieight <
navigability

class name

attributes

operations

Association Details

» Can assign names to the ends of the
association to give further information

Team

Employee

-group

-members: Employee

1

*

-Name : string
+D : long

-adfaf: bool

#Salary: double

+setName()

+getName) : string

-calcInternalStuffin x : byte, in y : decima)

18

Static vs. Dynamic Design

« Static design describes code structure and object
relations
— Class relations
— Objects at design time
— Doesn’t change
* Dynamic design shows communication between
objects
— Similarity to class relations
— Can follow sequences of events
— May change depending upon execution scenario
— Called Object Diagrams

Object Diagrams

« Shows instances of Class Diagrams and links
among them

— An object diagram is a snapshot of the objects in a
system
+ At a point in time
* With a selected focus
— Interactions — Sequence diagram

— Message passing — Collaboration diagram
— Operation — Deployment diagram

19

Object Diagrams

 Format is

— Instance name : Class name
— Attributes and Values

— Example:

M1: Menu window [

visible=true .| Attribute values |
position=(10,23) |«
size=160

Objects and Links

d1 : Department d2 : Department

name = "Sales”

lsname = “R&D"

link

d3 : Department

name = “US Sales”

anonymous object
manager
p : Person (
'

rame = Erm & : Contactinformation

employeelD = 4362 address = “1472 Miller St."
title = “VP of Sales”

object

attribute value

Can add association type and also message type

20

Package Diagrams

» To organize complex class diagrams, you can group
classes into packages. A package is a collection of
logically related UML elements

* Notation
— Packages appear as rectangles with small tabs at the top.
— The package name is on the tab or inside the rectangle.

— The dotted arrows are dependencies. One package depends
on another if changes in the other could possibly force
changes in the first.

— Packages are the basic grouping construct with which you
may organize UML models to increase their readability

Package Example

Dispatcherinterface

-
- ~
- ~

“ N

Notification

IncidentManagement

21

More Package Examples

Students Academic ¢ Example #
Employees
—
Orders Customers
Example #2 ———» Mailing List Ul Mailing List
- Manager

Interaction Diagrams

* Interaction diagrams are dynamic -- they
describe how objects collaborate.

* A Sequence Diagram:
— Indicates what messages are sent and when
— Time progresses from top to bottom
— Objects involved are listed left to right

— Messages are sent left to right between objects in
sequence

22

Sequence Diagram Format

Actor from
Use Case Objects
\‘% 4___,_--— '''''
: Process ltem Stock Item
Salds Order Scraen
imser ! ! !
1 I 1
I 1
Find ! . !
L Get quantity 1
. . ; 2 —
Activation = - 3 |;]
: fetalls |
pl e I !
4 I 1
| 1
L 1 | 1
, :
4
Lifeline -~ Calls = Solid Lines

Returns = Dashed Lines

Sequence Diagram : Destruction

a:A
1
| «oreate:;» o bB

1
oneration o
} |

- - esult _ _ '

1
«destroys o
>

2 Shows Destruction of b
(and Construction)

23

Sequence Diagram : Timing

Slanted Lines show propagation delay of messages
Good for modeling real-time systems

|CaHer'User| | Phone:Tele | | Uncle:User |

r e NQo !

T
|
|
|
I
I
I
I

If messages cross this is usually problematic — race conditions

Sequence Example: Alarm System

* When the alarm goes off, it rings the alarm, puts a
message on the display, notifies the monitoring
service

s % 8 2

. —Control Panel
Sensor ‘ ‘

| [
display ‘ display
I \T

_User - Acoustic __Monitoring

nng

T
—
b

i
ﬂ

24

Sequence Diagram Example

Hotel Reservation

aNotice

. Caonfirmation

]

i aChain aHotel
object »| HotelChain Hatel
wihdow
Userlnterface : :
| |
| |
makeReserationdyvoid | makeReservatian{void |
- o
*\H_ b D«#ftemﬁﬂn
message
*[for each day] isRoom:=availabled:baalean
conditii

) rHon aReservation

[i=Room] = er—

Reservation

,,\/ creation Z__ o
activation bar —
notex\ I
L | If a room is available for
x deleti L each day of the stay, make
« eletion [¥— areservation and send a

———— lifeline ———»

confirmation.

Collaboration Diagram

Collaboration Diagrams show similar information to

sequence diagrams, except that the vertical sequence
1s missing. In its place are:
— Object Links - solid lines between the objects that interact

— On the links are Messages - arrows with one or more
message name that show the direction and names of the
messages sent between objects

the sequence diagram

Emphasis on static links as opposed to sequence in

25

Collaboration Diagram

\: off hook
\J : dial tone
\2: dial

‘\3: connect

4: Hello?
-

2
Elevator

At ring 3: Close
e

/2‘1.1: off hook - Cabin

3: connect

2: Turn on

Phone:TS

Light

Door

Activity Diagrams

* Fancy flowchart

— States

Displays the flow of activities involved in a single process

+ Describe what is being processed
* Indicated by boxes with rounded corners
— Swim lanes
* Indicates which object is responsible for what activity

Branch

* Transition that branch
* Indicated by a diamond

— Fork

+ Transition forking into parallel activities
* Indicated by solid bars
— Start and End

®

26

Sample Activity Diagram

* Ordering System

* May need multiple
diagrams from other
points of view

[Wore tzms]

[lsoues]

Activity Diagram Example

imlane

Ve T~
Custamer ATM Mathine “Bank
«— start
activit
Ve V
(_ Enter pin (" Authorize guard expression

{_Enter amount

branch 4
palid PN Y Trwalid PIN)

{" Check accoun| thalance

o fork

Take money from slot 3——

27

State Transition Diagrams

* Fancy version of a DFA

» Shows the possible states of the object and the
transitions that cause a change in state

— 1.e. how incoming calls change the state

* Notation
— States are rounded rectangles
— Transitions are arrows from one state to another. Events or
conditions that trigger transitions are written beside the
arrows.
— Initial and Final States indicated by circles as in the
Activity Diagram
* Final state terminates the action; may have multiple final states

State Representation

* The set of properties and values describing the object
in a well defined instant are characterized by
— Name
— Activities (executed inside the state)
* Do/ activity
— Actions (executed at state entry or exit)

* Entry/ action
 Exit/ action

— Actions executed due to an event
» Event [Condition] / Action “Send Event

28

Notation for States

e _— /_,,-
name do/ build piece

i

¥ o
activities

On event/

\‘\ (Typing Password \

entry/ set echo off :
-

a exit/ set echo on
get(char)/ store char

Simple Transition Example

evgnt

(Typing Password)
entry/ set echo off ¥ -
Request/
display “enter password”

exit/ set echo on
get(char)/ store char
/ "

‘k

\
action

29

More Simple State Examples

\ideo Recorder

.\ TogglePower
Off

TogglePower

Remote Control

“\/CR"

TV Control
1 v’

“OnOff"/*TV.TogglePower

VR Control
[]

“OnOff"/*Video Recorder.TogglePowe!

TV

._ TogglePower
Off

TogglePower

State Transition Example

initial state

fCursorto SSM

Getting 55M

Validating PIN/SSN
@ Rejecting
Canceliauit)

[not validfDisplay error message

final state

Walidating

Retry/Clear 55N, PIN entries

AN

Press tah OR move cursorta PIM
field/Cursorto PIM

event guard activity

Press I«av[l-(exj.'= ta b]IDispéy key

Press shift-tab OR move cursar to
SSN field/Cursorto 35N

transition —

Geting PIN state

[walidlStart transaction dovalidate SSH ajnd Pir submit
— action

Press keylkey = shift-tabl\Displaydot

30

State Charts — Local Variables

« State Diagrams can also store their own local
variables, do processing on them

 Library example counting books checked out
and returned

Borrow /
N = N+1
o) ()@
Start / N=0 Stop / N=0
Return /
N=N-1

Component Diagrams

» Shows various components in a system and their
dependencies, interfaces

 Explains the structure of a system

 Usually a physical collection of classes
— Similar to a Package Diagram in that both are used to group
elements into logical structures
— With Component Diagrams all of the model elements are
private with a public interface whereas Package diagrams
only display public items.

31

Component Diagram Notation

« Components are shown as rectangles with two

tabs at the upper left

%Component

Dashed arrows indicate dependencies

il

Circle and solid line indicates an interface to
the component

Component Example - Interfaces

e Restaurant
ordering
system

* Define
interfaces
first —
comes
from Class
Diagrams

O <<user interfaces>>
Order ltem Farm

+Begin Order)

+Add ltem()

+3elect ltem()

+3elect Quantity()

+Check Stock()

+Enter Special Instructions()
+Calculate Item Total()

<=<user interface>>
O Qrder Confirmation Form

+Calculate Tatal()

+Confirm Order()

+Calculate Tax()

+Calculate Restaurant Total()
+Calculate Delivery Charge()
+Calculate Grand Total()

() <<user interfaces>
Ertor Form

+Display Error Message()

0 |QrderSystem
+Create Order()

O 1Qrder

+Add ftem()
+Place Order)

o IRestaurantSysterm.

+Place Order()
+Check Stocki)

o [TaxEngine

+Calculate)

32

Component Example - Components

 Graphical depiction of components

O <<user interfacess <=user interface>» e lerfaces>
uger interface
Qrder Item Form T Order Confirmation Farm T Error Form
::Rest aaaaa t Service Webh

i |OrderSystem [Order
/3
Crder System
:: T IRestaurantSystem
—/ .
estaurant System
== — !
Tax 5 ——0 mase
ax Systerm axEngine
 ——|

Component Example - Linking

» Linking components with dependencies

<=<user inteface=» seuser interfacen:>
0 Order Confirmation Form O Seuser inlerface>>
Order ltem Farm Errar Farm

—
—

:Hestaurant Semice Weh
T

H
|
i
¥
? 10rderSystemn |Qrder
=
]

—1
:IOrderSystem --—--------------)T IRestaurantSystern
¥
¥
H
i o 5
estaurant System
= 4 e § ’
Tax System __0 [TaxEngine
1

33

Deployment Diagrams

» Shows the physical architecture of the hardware and
software of the deployed system

* Nodes
— Typically contain components or packages
— Usually some kind of computational unit; e.g. machine or
device (physical or logical)
* Physical relationships among software and hardware
in a delivered systems

— Explains how a system interacts with the external
environment

Some Deployment Examples

Cliant APC

Modem

connection

- Cofperaie
PC - Catabase DB
~ L4
s - -
i F
{35 apar -~
; M. | Servartics 4
jlon !

access
-,
#
-
Gligni GPC
%’]

Disk

34

Deployment Example

Eeal Estate Server

Listing

==Slorage==

— —== MultipleListings

\ component

IListing
=

Bank Server
==Database== Morgage Application
CustomerDB
fl\
_______ 4,
interface /|M0ﬁgagEApplication
:
T
|
|
|
f
TaPc -
| —_
TCRAR Buyetinterface

TCRIP

connection

Often the Component Diagram is combined with the Deployment

Summary and Tools

+ UML is a modeling language that can be used independent of

development

* Adopted by OMG and notation of choice for visual modeling
— http://www.omg.org/uml/

* Creating and modifying UML diagrams can be labor and time

intensive.

* Lots of tools exist to help
— Tools help keep diagrams, code in sync

Repository for a complete software development project

— Examples here created with TogetherSoft ControlCenter, Microsoft
Visio, Tablet UML

— Otbher tools:

» Rational, Cetus, Embarcadero
* See http://plg.uwaterloo.ca/~migod/uml.html for a list of tools, some free

35

