User Interface Design

Part 1

User Interfaces

• “Today, user needs are recognized to be important in designing interactive computer systems, but as recently as 1980, they received little emphasis.” J. Grudin

• “We can’t worry about these user interface issues now. We haven’t even gotten this thing to work yet!” Mulligan
UI

• The User Interface today is often one of the most critical factors regarding the success or failure of a computer system
• Good UI design:
 – Increases efficiency
 – Improves productivity
 – Reduces errors
 – Reduces training
 – Improves acceptance
• Approach: The UI is the system
• Things to consider
 – Technical issues in creating the UI
 – User’s mental model
 – Conceptual model

Where is the UI?

• Seeheim Model
 – Describes the UI as the outer layer of the system
 – Agent responsible for interaction between the user and application
 – Consists of two sub-layers
 • Presentation
 – Perceptible aspects including screen design, keyboard layout
 • Dialog
 – Syntax of interaction including meta-communication (e.g. help)
 – Might include a natural language component
Seeheim Model

• Advantages
 – Could use the same outer layer for different applications
 • E.g. same look and feel for different products
 – Single application could be implemented with different outer layers
 • E.g. for different platforms, PDA, speech, etc.
• Assumed changes are likely to occur in the interface while the application remains largely unaffected

MVC

• Model-View-Controller – discussed previously
 – Similar advantages to Seeheim model
Human Factors in HCI

- Relevant disciplines
 - Humanities
 - Psychological approaches to how people remember, think, feel
 - E.g., don’t require user to remember more than 7 items at a time
 - Arts
 - Graphic arts, impact of layout, colors, spatial arrangement
 - Increasingly includes sound, music, animation, aspects of cinematography
 - Cognitive Ergonomics
 - Methods to allow humans to adapt to software artifacts
 - Try to adapt software to the task, not user to the software

Role of Models

- Models represent relevant characteristics of a part of reality that we need to understand
- But models are abstract
- Internal Models
 - Models for “execution”. Used by an agent to make decisions.
 - If a human is the agent, this is a mental model
 - If a machine is the agent, this is a program or knowledge system
- External Models
 - Models for communication.
 - Represent some formalism of the domain, e.g. automata or structure charts or UML diagrams
- Some models could be both, e.g. task knowledge models
 - E.g. knowledge about the work domain
Model of Human Information Processing

- Example of an external model
- Human Input is considered to proceed through a number of phases
 - Edge detection
 - Unstructured information structured into sketch
 - Gestalt formation
 - Small number of understandable structures formed, e.g. triangle or phoneme
 - Combination
 - Gestalts combined into groups of segments that belong together, e.g. phonemes to a word
 - Recognition
 - Segments recognized semantically, e.g. a word’s meaning, a picture of a tree
- Whole process takes less than a second and less automatic down the chain
 - Familiar stimulus is processed faster
 - So we may design our system or train our users for important signals

Model of Human Information Processing

- Human Output
 - Movement
 - Gestures, sounds, manipulations of tools
 - Human “CPU” decides on the meaning of the output, but leaves execution to motor processes that are running “unattended”
- Only in cases of problems is attention needed
 - E.g. location to click is awkward, can’t hear own voice in a spoken command
 - Limited capacity for simultaneous processing
Working Memory

• Modern psychology presumes separation from current-term and long-term memory
 – Current memory consists of 5-9 activated elements from long term memory
 • Chunking: 85884 to one chunk instead of five
 – Long-term memory is highly structured
 • Indexed by current memory at time of activation
 • Also part-of, member-of, generalization relationships between objects

Mental Models of Information Systems

• Planning the use of the technology
 – Users will apply their mental model to find out for what part of their task the system could be used and the conditions for use

• Execution of a task with a system
 – Continuous need for fine-tuning of user actions toward system events

• System has performed some task and produced output
 – The user must evaluate the results using their mental model, translate to the goals and needs of the user
 – E.g. accept slow response to query due to network congestion

• Multiple processes
 – User must cope with unexpected system events and interpret the system's behavior in relation to the intended task
Mental Models

- Just models – abstract aspects the user considers to be relevant and usable
- General characteristics:
 - Incomplete
 - Users generally aware that they do not really know all details of the system
 - They can only partly be “run”
 - May know how to express search/replace start and end situations, but not how the effect is obtained
 - They are unstable
 - Changes over time from user experiences
 - They have vague boundaries
 - People mix models, e.g. app with OS with network
 - They are parsimonious
 - People like models that are not too complicated
 - Elements of superstition for situations they do not really understand
 - E.g. manually park the hard drive prior to shutdown
- All of these characteristics can be used to help assess a UI

Design of Interactive Systems

- User Interface concept: UVM – User’s Virtual Machine
 - UVM includes the user and all systems that the user touches for the application
 - E.g. Networking, remote sources of data and computing
 - In considering a web browser, it is relevant to understand the network, caching, refreshing, reloading, etc. in terms of data and time
 - Newer applications include collaboration and groupware
Process Model for UI Design

- The book proposes a cyclical process devoted to analysis, specifications, and evaluation

 - Analysis
 - Task analysis
 - Model task situation for a single user, Task 1
 - Use ethnography, psychological knowledge, validity analysis
 - Alternate ways to perform tasks may be considered
 - Model task domain for multiple users, Task 2
 - Specifications, negotiation, compromises, constraints, feedback

 - Specification
 - Specs based on task model, includes cooperation technology and user-relevant system structures and network

 - Evaluation
 - Design decisions made, guidelines and standards should be considered. Prototyping might be considered.
Design as Multi-Disciplinary Collaboration

• Take into account individual users, clients, structure and organization of the group for the system
 – Must know individuals’ knowledge, group knowledge and dynamics

• Example: bank setting
 – Client and employee on different sides of a counter, client doesn’t know what clerk is doing on the screen
 – More service-oriented if the client and clerk look at the screen together?

• Detailed design decisions
 – An early evaluation needs to include analytical methods
 • Formal evaluation
 • Cognitive walkthroughs
 • Usability testing
 – Users in different roles
 – Ethnography, Focus, Interviews