
1

Software Testing

CS 401

Suppose you are asked:

• Would you trust a completely automated nuclear
power plant?

• Would you trust a completely automated pilot?
– What if the software was written by you?
– What if it was written by a colleague?

• Would you dare to write an expert system to
diagnose cancer?
– What if you are personally held liable in a case where

a patient dies because of a malfunction of the
software?

2

State of the Art

• Currently the field cannot deliver fault-free
software
– Studies estimate 30-85 errors per 1000 LOC

• Most found/fixed in testing
– Extensively-tested software: 0.5-3 errors per 1000

LOC
• Testing is postponed, as a consequence: the

later an error is discovered, the more it costs to
fix it (Boehm: 10-90 times higher)

• More errors in design (60%) compared to
implementation (40%).
– 2/3 of design errors not discovered until after software

operational

Testing

• Should not wait to start testing until after
implementation phase

• Can test SRS, design, specs
– Degree to which we can test depends upon how

formally these documents have been expressed
• Should first establish testing objectives

– Find as many errors as possible?
– Increase confidence in software functioning properly?

• Testing software shows only the presence of
errors, not their absence

3

Testing

• Could show absence of errors with Exhaustive
Testing
– Test all possible outcomes for all possible inputs
– Usually not feasible even for small programs

• Alternative
– Formal methods
– Can prove correctness of software
– Can be very tedious
– Partial coverage testing

Terminology

• Reliability: The measure of success with which the
observed behavior of a system confirms to some
specification of its behavior.

• Failure: Any deviation of the observed behavior from
the specified behavior.

• Error: The system is in a state such that further
processing by the system will lead to a failure.

• Fault (Bug or Defect): The mechanical or algorithmic
cause of an error.

• Test Case: A set of inputs and expected results that
exercises a component with the purpose of causing
failures and detecting faults

4

What is this?

A failure?

An error?

A fault?

Need to specify
the desired behavior first!

Erroneous State (“Error”)

5

Algorithmic Fault

Mechanical Fault

6

How do we deal with Errors
and Faults?

Modular Redundancy?

7

Declaring the
Bug

as a Feature?

Patching?

8

Verification?

Testing?

9

How do we deal with Errors and
Faults?

• Verification:
– Assumes hypothetical environment that does not match real

environment
– Proof might be buggy (omits important constraints; simply wrong)

• Modular redundancy:
– Expensive

• Declaring a bug to be a “feature”
– Bad practice

• Patching
– Slows down performance

• Testing (this lecture)
– Testing alone not enough, also need error prevention, detection, and

recovery

Testing takes creativity
• Testing often viewed as dirty work.
• To develop an effective test, one must have:

• Detailed understanding of the system
• Knowledge of the testing techniques
• Skill to apply these techniques in an effective and efficient manner

• Testing is done best by independent testers
– We often develop a certain mental attitude that the program

should in a certain way when in fact it does not.

• Programmer often stick to the data set that makes the
program work
– "Don’t mess up my code!"

• A program often does not work when tried by somebody
else.
– Don't let this be the end-user.

10

Testing Activities

Tested
Subsystem

Subsystem
Code

FunctionalIntegration

Unit

Tested
Subsystem

Requirements
Analysis

Document

System
Design

Document

Tested Subsystem

Test Test

Test

Unit
Test

Unit
Test

User
Manual

Requirements
Analysis

Document

Subsystem
Code

Subsystem
Code

All tests by developerAll tests by developer

Functioning
System

Integrated
Subsystems

Global
Requirements

Testing Activities continued

User’s understanding
Tests by developerTests by developer

Performance Acceptance

Client’s
Understanding

of Requirements

Test

Functioning
System

Test
Installation

User
Environment

Test

System in
Use

Usable
System

Validated
System

Accepted
System

Tests (?) by userTests (?) by user

Tests by clientTests by client

11

Fault Handling Techniques

Testing

Fault Handling

Fault Avoidance Fault ToleranceFault Detection

Debugging

Unit
Testing

Integration
Testing

System
Testing

Verification Configuration
Management

Atomic
Transactions

Modular
Redundancy

Correctness
Debugging

Performance
Debugging

ReviewsDesign
Methodology

Quality Assurance Encompasses Testing

Usability Testing

Quality Assurance

Testing

Prototype
Testing

Scenario
Testing

Product
Testing

Fault Avoidance Fault Tolerance

Fault Detection

Debugging

Unit
Testing

Integration
Testing

System
Testing

Verification Configuration
Management

Atomic
Transactions

Modular
Redundancy

Correctness
Debugging

Performance
Debugging

Reviews

Walkthrough Inspection

12

Types of Testing

• Unit Testing:
– Individual subsystem
– Carried out by developers
– Goal: Confirm that subsystems is correctly

coded and carries out the intended
functionality

• Integration Testing:
– Groups of subsystems (collection of classes)

and eventually the entire system
– Carried out by developers
– Goal: Test the interface among the

subsystem

System Testing
• System Testing:

– The entire system
– Carried out by developers
– Goal: Determine if the system meets the

requirements (functional and global)

• Acceptance Testing:
– Evaluates the system delivered by developers
– Carried out by the client. May involve executing

typical transactions on site on a trial basis
– Goal: Demonstrate that the system meets customer

requirements and is ready to use

• Implementation (Coding) and Testing go hand in
hand

13

Testing and the Lifecycle

• How can we do testing across the
lifecycle?
– Requirements
– Design
– Implementation
– Maintenance

Requirements Testing
• Review or inspection to check whether all aspects of the

system are described
• Look for

– Completeness
– Consistency
– Feasibility
– Testability

• Most likely errors
– Missing information (functions, interfaces, performance,

constraints, reliability, etc.)
– Wrong information (not traceable, not testable, ambiguous, etc.)
– Extra information (bells and whistles)

14

Design Testing

• Similar to testing requirements, also look for
completeness, consistency, feasibility, testability
– Precise documentation standard helpful in preventing

these errors
• Assessment of architecture
• Assessment of design and complexity
• Test design itself

– Simulation
– Walkthrough
– Design inspection

Implementation Testing

• “Real” testing
• One of the most effective techniques is to

carefully read the code
• Inspections, Walkthroughs
• Static and Dynamic Analysis testing

– Static: inspect program without executing it
• Automated Tools checking for

– syntactic and semantic errors
– departure from coding standards

– Dynamic: Execute program, track coverage,
efficiency

15

Maintenance

• On average, more than 50% of total
lifecycle costs is spent on maintenance

• Regression Testing
– Re-testing the system when changes are

made
– Retest all : All tests re-run
– Selective retest : Only some tests re-run
– Quality of documentation and tool support is

essential for success with regression testing

Manual Test Techniques

• Static Techniques
– Reading
– Walkthroughs/Inspections
– Scenario Based Evaluation
– Correctness Proofs
– Stepwise Abstraction

16

Reading

• You read, and reread, the code
• Even better: Someone else reads the code

– Author knows code too well, easy to overlook things,
suffering from implementation blindness

– Difficult for author to take a destructive attitude toward
own work

• Peer review
– More institutionalized form of reading each other’s

programs
– Hard to avoid egoless programming; attempt to avoid

personal, derogatory remarks

Walkthroughs

• Walkthrough
– Semi to Informal technique
– Author guides rest of the team through their

code using test data; manual simulation of the
program or portions of the program

– Serves as a good place to start discussion as
opposed to a rigorous discussion

– Gets more eyes looking at critical code

17

Inspections

• Inspections
– More formal review of code
– Developed by Fagan at IBM, 1976
– Members have well-defined roles

• Moderator, Scribe, Inspectors, Code Author (largely
silent)

• Inspectors paraphrase code, find defects
• Examples:

– Vars not initialized, Array index out of bounds, dangling
pointers, use of undeclared variables, computation faults or
possibilities, infinite loops, off by one, etc.

– Will discuss inspections in more detail later

Scenario Based Evaluation
• Use-case scenarios drive the tests
• Collection of scenarios developed

– May include both required and anticipated future behavior of the
system

– Classified as direct (fully supported) and indirect (not fully
supported)

• Architectural changes required for indirect scenarios
described

• Evaluation of scenarios is performed
• Can be done at each stage

– E.g. User scenarios
– E.g. Design scenarios (like we did for the KWIC Index)

18

Correctness Proofs

• Most complete static analysis technique
• Try to prove a program meets its specifications
• {P} S {Q}

– P = preconditions, S = program, Q = postconditions
– If P holds before the execution of S, and S terminates,

then Q holds after the execution of S

• Formal proofs often difficult for average
programmer to construct

Stepwise Abstraction
• Opposite of top-down development
• Starting from code, build up to what the function is for

the component
• Example:

1. Procedure Search(A: array[1..n] of integer, x:integer): integer;
2. Var low,high,mid: integer; found:boolean;
3. Begin
4. low:=1; high:=n; found:=false;
5. while (low<=high) and not found do
6. mid:=(low+high)/2
7. if (x<A[mid]) then high:=mid-1;
8. else if (x>A[mid]) then low:=mid+1;
9. else found:=true;
10. endif
11. endwhile
12. if found then return mid else return 0
13. End

19

Stepwise Abstraction

• If-statement on lines 7-10
7.if (x<A[mid]) then high:=mid-1;
8.else if (x>A[mid]) then low:=mid+1;
9.else found:=true;
10. endif

• Summarize as:
– Stop searching (found:=true) if x=A[mid] or shorten the

interval [low..high] to a new interval [low’..high’] where
high’-low’ < high-low

– (found = true and x=A[mid]) or
(found = false and x∉A[1..low’-1] and
x ∉ A[high’+1..n] and high’-low’ < high-low)

Stepwise Abstraction

• Consider lines 4-5
4. low:=1; high:=n; found:=false;
5. while (low<=high) and not found do

• From this it follows that in the loop
– low<=mid<=high

• The inner loop must eventually terminate since
the interval [low..high] gets smaller until we find
the target or low > high

• Complete routine:
if Result > 0 then A[Result] = x
else Result=0

20

Dynamic Testing

• Black Box Testing
• White Box Testing

Black-box Testing

• Focus: I/O behavior. If for any given input, we
can predict the output, then the module passes
the test.
– Almost always impossible to generate all possible

inputs ("test cases")

• Goal: Reduce number of test cases by
equivalence partitioning:
– Divide input conditions into equivalence classes
– Choose test cases for each equivalence class.

(Example: If an object is supposed to accept a
negative number, testing one negative number is
enough)

21

Black-box Testing (Continued)
• Selection of equivalence classes (No rules, only

guidelines):
– Input is valid across range of values. Select test cases from 3

equivalence classes:
• Below the range
• Within the range
• Above the range

– Input is valid if it is from a discrete set. Select test cases from 2
equivalence classes:

• Valid discrete value
• Invalid discrete value

• Another solution to select only a limited amount of test
cases:
– Get knowledge about the inner workings of the unit being tested

=> white-box testing

White-box Testing

• Focus: Thoroughness (Coverage). Every
statement in the component is executed at least
once.

• Four types of white-box testing
– Statement Testing
– Loop Testing
– Path Testing
– Branch Testing

22

if (i = TRUE) printf("YES\n"); else printf("NO\n");
Test cases: 1) i = TRUE; 2) i = FALSE

White-box Testing (Continued)
• Statement Testing (Algebraic Testing): Test single

statements (Choice of operators in polynomials, etc)
• Loop Testing:

– Cause execution of the loop to be skipped completely.
(Exception: Repeat loops)

– Loop to be executed exactly once
– Loop to be executed more than once

• Path testing:
– Make sure all paths in the program are executed

• Branch Testing (Conditional Testing): Make sure that
each possible outcome from a condition is tested at least
once

/*Read in and sum the scores*/

White-box Testing Example
FindMean(float Mean, FILE ScoreFile)

{ SumOfScores = 0.0; NumberOfScores = 0; Mean = 0;
Read(ScoreFile, Score);

while (! EOF(ScoreFile) {
if (Score > 0.0) {

SumOfScores = SumOfScores + Score;
NumberOfScores++;

}

Read(ScoreFile, Score);
}

/* Compute the mean and print the result */
if (NumberOfScores > 0) {

Mean = SumOfScores/NumberOfScores;
printf("The mean score is %f \n", Mean);

} else
printf("No scores found in file\n");

}

23

White-box Testing Example: Determining the Paths
FindMean (FILE ScoreFile)
{ float SumOfScores = 0.0;

int NumberOfScores = 0;
float Mean=0.0; float Score;
Read(ScoreFile, Score);
while (! EOF(ScoreFile) {

if (Score > 0.0) {
SumOfScores = SumOfScores + Score;
NumberOfScores++;
}

Read(ScoreFile, Score);
}
/* Compute the mean and print the result */
if (NumberOfScores > 0) {

Mean = SumOfScores / NumberOfScores;
printf(“ The mean score is %f\n”, Mean);

} else
printf (“No scores found in file\n”);

}

1

2
3

4

5

7

6

8

9

Constructing the Logic Flow Diagram
Start

2

3

4 5

6

7

8 9

 Exit

1

F

T F

T F

T

24

Finding the Test Cases
Start

2

3

4 5

6

7

8 9

Exit

1

b

d e

gf

i j

h
c

k l

a (Covered by any data)

(Data set must

(Data set must contain at least one value)

be empty)

(Total score > 0.0)(Total score < 0.0)

(Positive score) (Negative score)

(Reached if either f or
e is reached)

Test Cases

• Test case 1 : ? (To execute loop exactly
once)

• Test case 2 : ? (To skip loop body)
• Test case 3: ?,? (to execute loop more

than once)

�These 3 test cases cover all control flow
paths

25

Comparison of White & Black-
Box Testing

• White-box Testing:
– Potentially infinite number of

paths have to be tested
– White-box testing often tests

what is done, instead of what
should be done

– Cannot detect missing use
cases

• Black-box Testing:
– Potential combinatorical

explosion of test cases (valid
& invalid data)

– Often not clear whether the
selected test cases uncover a
particular error

– Does not discover extraneous
use cases ("features")

• Both types of testing are
needed

• White-box testing and black
box testing are the extreme
ends of a testing continuum.

• Any choice of test case lies in
between and depends on the
following:
– Number of possible logical

paths
– Nature of input data
– Amount of computation
– Complexity of algorithms and

data structures

Fault-Based Test Techniques

• Coverage-based techniques considered
the structure of code and the assumption
that a more comprehensive solution is
better

• Fault-based testing does not directly
consider the artifact being tested
– Only considers the test set
– Aimed at finding a test set with a high ability to

detect faults

26

Fault-Seeding

• Estimating the number of trout in a lake:
– Catch N trout from the lake
– Mark them and throw them back in
– Catch M trout
– If M’ of the M trout are marked, the total number of

trout originally in the lake may be estimated at: (M-
M’) * N/M’

• Can apply same idea to software
– Assumes real and seeded faults have the same

distribution

How to seed faults?

• Devised by testers or programmers
– But may not be very realistic

• Have program independently tested by two
groups
– Faults found by the first group can be considered

seeded faults for the second group
– But good chance that both groups will detect the same

faults
• Rule of thumb

– If we find many seeded faults and relatively few others,
the results can be trusted

– Any other condition and the results generally cannot be
trusted

27

Mutation Testing
• In mutation testing, a large number of variants of the

program is generated
– Variants generated by applying mutation operators

• Replace constant by another constant
• Replace variable by another variable
• Replace arithmetic expression by another
• Replace a logical operator by another
• Delete a statement
• Etc.

– All of the mutants are executed using a test set
– If a test set produces a different result for a mutant, the mutant is

dead
– Mutant adequacy score: D/M

• D = dead mutants, M = total mutants
• Would like this number to equal 1

• Points out inadequacies in the test set

Error-Based Test Techniques

• Focuses on data values likely to cause errors
– Boundary conditions, off by one errors, memory leak,

etc.
• Example

– Library system allows books to be removed from the list
after six months, or if a book is more than four months
old and borrowed less than five times, or ….

– Devise test examples on the borders; at exactly six
months, or borrowed five times and four months old, etc.
As well as some examples beyond borders, e.g. 10
months

• Can derive tests from requirements (black box) or
from code (white box) if code contains if (x>6) then
.. Elseif (x >=4) && (y<5) …

28

Integration Testing Strategy

• The entire system is viewed as a collection of
subsystems (sets of classes) determined during the
system and object design.

• The order in which the subsystems are selected for
testing and integration determines the testing strategy
– Big bang integration (Nonincremental)
– Bottom up integration
– Top down integration
– Sandwich testing
– Variations of the above

Using the Bridge Pattern to enable
early Integration Testing

• Use the bridge pattern to provide multiple
implementations under the same interface.

• Interface to a component that is incomplete, not
yet known or unavailable during testing

VIP Seat Interface
(in Vehicle Subsystem)

Seat Implementation

Stub Code Real SeatSimulated
Seat (SA/RT)

29

Integration Testing: Big-Bang Approach

Unit Test
F

Unit Test
E

Unit Test
D

Unit Test
C

Unit Test
B

Unit Test
A

System Test

Don’t try this!

Bottom-up Testing Strategy
• The subsystem in the lowest layer of the call

hierarchy are tested individually
• Then the next subsystems are tested that call

the previously tested subsystems
• This is done repeatedly until all subsystems are

included in the testing
• Special program needed to do the testing, Test

Driver:
– A routine that calls a subsystem and passes a test

case to it

30

Bottom-up
Integration

A

B C D

GFE

Layer I

Layer II

Layer III

Test F

Test E

Test G

Test C

Test D,G

Test B, E, F

Test
A, B, C, D,

E, F, G

Pros and Cons of bottom up
integration testing

• Bad for functionally decomposed systems:
– Tests the most important subsystem (UI) last

• Useful for integrating the following systems
– Object-oriented systems
– real-time systems
– systems with strict performance

requirements

31

Top-down Testing Strategy

• Test the top layer or the controlling subsystem first
• Then combine all the subsystems that are called by the

tested subsystems and test the resulting collection of
subsystems

• Do this until all subsystems are incorporated into the test
• Special program is needed to do the testing, Test stub :

– A program or a method that simulates the activity of a missing
subsystem by answering to the calling sequence of the calling
subsystem and returning back fake data.

Top-down
Integration

Testing

A

B C D

GFE

Layer I

Layer II

Layer III

Test A

Layer I

Test A, B, C, D

Layer I + II

Test
A, B, C, D,

E, F, G

All Layers

32

Pros and Cons of top-down
integration testing

• Test cases can be defined in terms of the functionality of
the system (functional requirements)

• Writing stubs can be difficult: Stubs must allow all
possible conditions to be tested.

• Possibly a very large number of stubs may be required,
especially if the lowest level of the system contains many
methods.

Sandwich Testing Strategy

• Combines top-down strategy with bottom-up strategy
• The system is view as having three layers

– A target layer in the middle
– A layer above the target
– A layer below the target
– Testing converges at the target layer

• How do you select the target layer if there are more than
3 layers?
– Heuristic: Try to minimize the number of stubs and

drivers

33

Sandwich Testing
Strategy

A

B C D

GFE

Layer I

Layer II

Layer IIITest E

Test D,G

Test B, E, F

Test
A, B, C, D,

E, F, G

Test F

Test G

Test A

Bottom
Layer
Tests

Top
Layer
Tests

Test A,B,C, D

Pros and Cons of Sandwich
Testing

• Top and Bottom Layer Tests can be done
in parallel

• Does not test the individual subsystems
thoroughly before integration

• Solution: Modified sandwich testing
strategy

34

Modified Sandwich Testing
Strategy

• Test in parallel:
– Middle layer with drivers and stubs
– Top layer with stubs
– Bottom layer with drivers

• Test in parallel:
– Top layer accessing middle layer (top

layer replaces drivers)
– Bottom accessed by middle layer

(bottom layer replaces stubs)

Modified Sandwich Testing
Strategy

A

B C D

GFE

Layer I

Layer II

Layer III

Test F

Test E

Test B

Test G

Test D

Test A

Test C

Test B, E, F

Triple
Test I

Triple
Test ITriple

Test I
Triple
Test I

Test D,G

Double
Test II

Double
Test II

Double
Test II

Double
Test II

Double
Test I

Double
Test I

Double
Test I

Double
Test I

Test A,C

Test
A, B, C, D,

E, F, G

35

Steps in Integration-Testing

.

1. Based on the integration
strategy, select a component
to be tested. Unit test all the
classes in the component.

2. Put selected component
together; do any preliminary
fix-up necessary to make the
integration test operational
(drivers, stubs)

3. Do functional testing: Define
test cases that exercise all
uses cases with the selected
component

1. Based on the integration
strategy, select a component
to be tested. Unit test all the
classes in the component.

2. Put selected component
together; do any preliminary
fix-up necessary to make the
integration test operational
(drivers, stubs)

3. Do functional testing: Define
test cases that exercise all
uses cases with the selected
component

4. Do structural testing: Define
test cases that exercise the
selected component

5. Execute performance tests
6. Keep records of the test cases

and testing activities.
7. Repeat steps 1 to 7 until the

full system is tested.

The primary goal of integration
testing is to identify errors in
the (current) component
configuration.

4. Do structural testing: Define
test cases that exercise the
selected component

5. Execute performance tests
6. Keep records of the test cases

and testing activities.
7. Repeat steps 1 to 7 until the

full system is tested.

The primary goal of integration
testing is to identify errors in
the (current) component
configuration.

System Testing
• Functional Testing (Black Box)
• Structure Testing (White Box)
• Performance Testing
• Acceptance Testing
• Installation Testing

Impact of requirements on system testing:
– The more explicit the requirements, the easier they are to test.
– Quality of use cases determines the ease of functional testing
– Quality of subsystem decomposition determines the ease of

structure testing
– Quality of nonfunctional requirements and constraints

determines the ease of performance tests:

36

Performance Testing
• Stress Testing

– Stress limits of system (maximum #
of users, peak demands, extended
operation)

• Volume testing
– Test what happens if large amounts

of data are handled

• Configuration testing
– Test the various software and

hardware configurations

• Compatibility test
– Test backward compatibility with

existing systems

• Security testing
– Try to violate security requirements

• Timing testing
– Evaluate response times and

time to perform a function

• Environmental test
– Test tolerances for heat,

humidity, motion, portability

• Quality testing
– Test reliability, maintain- ability

& availability of the system

• Recovery testing
– Tests system’s response to

presence of errors or loss of
data.

• Human factors testing
– Tests user interface with user

Acceptance Testing
• Goal: Demonstrate system is

ready for operational use
– Choice of tests is made by

client/sponsor
– Many tests can be taken from

integration testing
– Acceptance test is performed

by the client, not by the
developer.

• Majority of all bugs in software is
typically found by the client after
the system is in use, not by the
developers or testers. Therefore
two kinds of additional tests:

• Goal: Demonstrate system is
ready for operational use
– Choice of tests is made by

client/sponsor
– Many tests can be taken from

integration testing
– Acceptance test is performed

by the client, not by the
developer.

• Majority of all bugs in software is
typically found by the client after
the system is in use, not by the
developers or testers. Therefore
two kinds of additional tests:

• Alpha test:
– Sponsor uses the software at

the developer’s site.
– Software used in a controlled

setting, with the developer
always ready to fix bugs.

• Beta test:
– Conducted at sponsor’s site

(developer is not present)
– Software gets a realistic workout

in target environment
– Potential customer might get

discouraged

• Alpha test:
– Sponsor uses the software at

the developer’s site.
– Software used in a controlled

setting, with the developer
always ready to fix bugs.

• Beta test:
– Conducted at sponsor’s site

(developer is not present)
– Software gets a realistic workout

in target environment
– Potential customer might get

discouraged

37

Testing has its own Life Cycle
Establish the test objectives

Design the test cases

Write the test cases

Test the test cases

Execute the tests

Evaluate the test results

Change the system

Do regression testing

Test
Team

Test

Analyst

TeamUser

Programmer
too familiar
with code

Professional
Tester

Configuration
Management

Specialist

System
Designer

38

Summary
• Testing is still a black art, but many rules and heuristics

are available
• Test as early as possible
• Testing is a continuous process with its own lifecycle
• Design with testing in mind
• Test activities must be carefully planned, controlled, and

documented
• We looked at:

– Black and White Box testing
– Coverage-based testing
– Fault-based testing
– Error-based testing

• Phases of testing (unit, integration, system)
• Wise to use multiple techniques

IEEE Standard 1012

• Template for Software Verification and
Validation in a waterfall-like model

1. Purpose
2. References
3. Definitions
4. Verification & Validation Overview

4.1 Organization
4.2 Master Schedule
4.3 Resources Summary
4.4 Responsibilities
4.5 Tools, techniques, methodologies

39

IEEE Standard 1012
5. Life-cycle Verification and Validation

5.1 Management of V&V
5.2 Requirements V&V
5.3 Design V&V
5.4 Implementation V&V
5.5 Test V&V
5.6 Installation & Checkout V&V
5.7 Operation and Maintenance V&V

6. Software V&V reporting
7. V&V Administrative Procedures

7.1 Anomaly reporting and resolution
7.2 Task iteration policy
7.3 Deviation policy
7.4 Control procedures
7.5 Standards, practices, conventions

Test Plan
• The bulk of a test plan can be structured as follows:

• Test Plan
– Describes scope, approach, resources, scheduling of test activities.

Refinement of V&V
• Test Design

– Specifies for each software feature the details of the test approach and
identify the associated tests for that feature

• Test Cases
– Specifies inputs, expected outputs
– Execution conditions
– Test Procedures

• Sequence of actions for execution of each test
– Test Reporting

• Results of tests

40

Sample Test Case 1
• Test Case 2.2 Usability 1 & 2

• Description: This test will test the speed of PathFinder.
• Design: This test will verify Performance Requirements 5.4 Usability-1

and Usability-2 in the Software Requirements Specification document.
• Inputs: The inputs will consist of a series of valid XML file containing

Garmin ForeRunner data.
• Execution Conditions: All of the test cases in Batch 1 need to be

complete before attempting this test case.
• Expected Outputs:
• The time to parse and time to retrieve images for various XML Garmin

Route files will be tested.

• Procedure:
• 1. The PathFinder program will be modified to time its parsing and

image retrieval times on at least 4 different sized inputs and on both
high-speed and dial-up internet.

• 2. Results will be tabulated and options for optimization will be
discussed if necessary.

Sample Test Case 1 (continued)
• Test Case 2.2 Usability 1 & 2
• Completed 12/9/04.

• Results:
• File File Size* DataPoints Dialup (56Kbps) Broadband(128Kbps)
• tinyrun.xml 2428 6 @12 seconds <2 seconds
• walk.xml 5840 16 @12 seconds <2 seconds
• exit.xml 366705 1152 @13 seconds @2.5 seconds
• run2.xml 654417 3000 @13 seconds @2.5 seconds

• According to this test data, the main delay in retrieving and displaying the data
is entirely dependent upon the user’s connection speed rather than on the
parsing of the DataPoints (which seemed to introduce almost no delay, as
evidenced by the minimal difference in times between the delay for tinyrun,
which consists of 6 data points, and run2, which consists of 3000 data points).
Optimization of the code was therefore deemed unnecessary.

41

Sample Test Case 2
• Test Case 1.6 - GetImage
• Description: This test will test the ability of the GetImage module to

retrieve an image from the TerraServer database given a set of
latitude and longitude coordinate parameters.

• Design: This will continue verification of System Feature 3.1 (Open
File) of the software requirements specification functions as
expected. This test will verify the ability of the GetImage module to
retrieve and put together a MapImage from a given set of latitude
and longitude parameters.

• Inputs: The input for this test case will be a set of Data Points as
created by the File modules in the above test case scenarios.

• Execution Conditions: All of the execution conditions of Test Case
scenarios 1.0-1.5 must be met, and those test cases must be
successful. Additionally, there must be a working copy of the
GetImage class, and the TerraServer must be functioning properly,
and this test case must be run on a computer with a working internet
connection.

Sample Test Case 2 (continued)
• Expected Outputs: The View will display the given MapImage retrieved from

the TerraServer. This image will be compared to the image retrieved from the
PhotoMap program to make sure that the latitude and longitude coordinates are
correct.

• Procedure:
1. The User will open Pathfinder and will call the File class with the name of the XML

file to be parsed by selecting “F)ile, O)pen” from the menu and finding the test file.
2. The File class will open the XML Parser.
3. The File class will call the XML Parser with the name of the XML file to be opened.
4. The XML Parser will open the file.
5. The XML Parser will create a new Data Point from the XML data returned and will

insert each Data Point into a LinkedList.
6. The XML Parser will return the LinkedList to the File class when finished.
7. Using the Route’s Get method, the File class will update the LinkedList instance of a

Route class.
8. The Route class, by way of its Notify method, will notify the GetImage class that its

data has changed.
9. The GetImage class will retrieve the appropriate Image(s) from the TerraServer

database.
10. The GetImage class will modify a MapImage’s image to be that of the Images

satisfying the given parameters, using the MapImage’s Set methods.
11. The MapImage will notify its observers (View).
12. View will redraw its bottom Image to be that of the Map.
13. The User will close the program.

42

Formal Inspections

Definition

• What is an inspection?
– A formal review of a work product by peers. A

standard process is followed with the purpose
of detecting defects early in the development
lifecycle.

• Examples of work products
– Code, Specs, Web Pages
– Presentations, Guides, Requirements,
– Specifications, Documentation

43

When are inspections used?

• Possible anytime code or documents are
complete
– Requirements: Inspect specs, plans,

schedules
– Design: Inspect architecture, design doc
– Implementation: Inspect technical code
– Test: Inspect test procedure, test report

Defects

• A defect is a
deviation from
specific or expected
behavior

• Something wrong
• Missing information
• Common error
• Standards violation
• Ambiguity
• Inconsistency
• Perception error
• Design error

• Inspections are used to find defects

44

A defect is a defect

• A defect is based on the opinion of the person
doing the review
– This means that any defect that is found IS a defect
– Not open to debate
– Not all defects are necessarily bugs
– Many defects may not be “fixed” in the end

• No voting or consensus process on what is a
defect

• How to fix a defect should be debated later, not
when the defects are logged

Why a formal review?

• Provides a well-defined process
– Repeatability, measurement
– Avoids some scenarios with less formal

processes
• “My work is perfect”

– Point is not to criticize the author
• “I don’t have time”

– Formal process proceeds only when all are prepared,
have inspected code in advance

– You can decide if you would like to undertake
an inspection within your team, but we will not
have inspection exercises in class

45

Typical Inspection Process

Planning
45 mins Prep

15-120 mins

Log Defects
60-120 mins

Rework

Follow-Up

Roles

Moderator

Scribe Work Owner

Inspectors

46

Owner Planning

• Owner decides what code/documents to review
– Should include requirements
– Common-errors list

• One available on 470 page for C++/Java
• Owner can include more specific common errors

– Paper copy of code listing for everyone
• See previous slides for what code to inspect
• If possible, add line numbers so code is easier to reference
• Up to owner’s discretion as to what/how much, but generally

one does not continue more than two hours at a time

Preparation

• Ideally, each inspector has materials to inspect
in advance
– Identify defects on their own to ensure independent

thought
– Note defects and questions
– Complete a defect log

• High/Medium/Low
– Without this preparation, group review might find only

10% of defects that could otherwise be found
(Fagan)

• Rules of thumb
– 2 hours for 10 full pages of text

47

Walkthrough
• Prior to walkthrough

– Owner distributes selected code, requirements docs
– Inspectors have prepared

• Purpose
– Provide context, explanation for selected code to

inspectors
– Relate code back to requirements

• Process
– Owner provides walkthrough for one “chunk” of code

that logically belongs together (e.g., a method)
– Inspectors search for defects
– Repeat for next chunk

Walkthrough Example

• Requirement: Support authentication
based upon user@host using regular
expressions

1 /***
2 * Returns a 1 if the user is on the ops list, and
3 * returns a 0 if the user is not on the ops list.
4 ***/
5 int Authorized(char *user)
6 {
7 FILE *f;
8
9 f=fopen(OPSPATH,"r"); /* open authorized file */
10 while (fgets(tempstr,80,f)!=NULL)
11 {
12 tempstr[strlen(tempstr)-1]='\0'; /* annoying \r at end */
13 if (!fnmatch(tempstr,user,FNM_CASEFOLD)) { fclose(f); return(1); }
14 }
15 fclose(f);
16 return(0);
17 }

Open file
Containing
operators

Returns true if
wildcards match

48

Defect Logging
• Performed by the scribe; leaves work owner free to

concentrate on other tasks
• Moderator leads meeting and facilitates process

– Keeps discussions to a minimum
– Defect understanding only
– No criticisms
– No “rat holes”
– Limited discussion
– Moderator has the right to stop discussion at any time
– May use round-robin for each inspector

• Focus is on finding defects
– A defect is a defect

Defect Log

6

5

4

Check for fopen errors9M3

Poor choice of variable name, f7L2

Did not initialize variable f7L1

DescriptionLocationSeverity:
H M L Q

49

Defect Logging

• High, Medium, Low, or Question
• Brief description should be ~7 words or less, or

until the owner understands
• If possible, resolve questions: defect or not
• Also log defects found in

– Parent document, e.g. requirements
– Common errors list
– Work product guidelines

• Will be up to the work owner whether or not to fix
a defect

Causal Analysis Meeting

• Purpose – Brainstorming session on the
root cause of specific defects
– This meeting supports the continuous

improvement process
– Initiate thinking and action about most

common or severe defects
– Can help prevent future defects from

occurring
• Specific action items may be to achieve this goal

50

Rework

• Purpose: Address defects found during the
logging process

• Rules
– Performed by product owner
– All defects must be addressed

• Does not mean they are fixed, but that sufficient
analysis/action has taken place

– All defects found in any other documents should be
recorded

– Owner should keep work log

Follow-Up

• Purpose: Verify resolution of defects
– Work product redistributed for review
– Inspection team can re-inspect or assign a

few inspectors to review
– Unfixed defects are reported to the team and

discussed to resolution

