
1

Requirements Engineering

Chapter 4

Overview
• Requirements Engineering

– The first step in finding a solution for a data processing problem
– Mutual understanding of the problem between developers and

clients
– Identify and document user requirements concerning function,

performance, reliability, etc.
• Requirement:

– a condition or capability needed by a user to solve a problem or
achieve an objective (IEEE90a)

• Output:
– requirements specification document
– Contract for the customer
– Starting point for design

• Iterative and cooperative process - analyzing,
documenting, testing understanding of problem

2

Software Lifecycle Activities

Application
Domain
Objects

SubSystems

class...
class...
class...

Implementat
ion Domain

Objects

Source
Code

Test
Cases

?

Expressed in
Terms Of

Structured By

Implemented
By

Realized By Verified
By

System
Design

Object
Design

Implemen-
tation Testing

class....?

Requirements
Elicitation

Use Case
Model

Requirements
Analysis

Requirements Engineering

• Requirements Engineering
– Elicitation

• Results in the specification of the system that the client can
understand (the “Problem Description”)

– Analysis
• An analysis model that developers can unambiguously

interpret (the “Problem Specification”)
– Elicitation is more challenging because you have to

collaborate with people, usually with a different
background

• Focus of the textbook and this class: Scenarios and Use
Cases can help bridge the gap

• Start with a description of the functionality (Use case model).
Then proceed by finding objects (object model).

3

Defining the System Boundary is Often
Difficult

What do you see here?

Crucial is the definition of the system boundary: What is inside, what is
outside the system?

Products of Requirements Process

Requirements
Analysis

system
specification:

Model

analysis
model: Model

(Activity Diagram)

Problem
Statement
Generation

Requirements
Elicitation

Problem
Statement

4

Requirements Elicitation Concepts

• Functional Requirements
• Nonfunctional Requirements
• Completeness, Consistency, Clarity,

Correctness
• Realism, Verifiability, Traceability
• Greenfield Engineering, Reeingineering,

Interface Engineering

Functional Requirements

• Describe the interactions between the
system and its environment independent
of its implementation
– Environment includes the user and any other

external system with which the system
interacts

– System services expected by end users

Functional requirements do not focus on any implementation details!

5

Example Functional Requirements
for SatWatch

• SatWatch is a wristwatch that displays the time based on
its current location using GPS satellites to determine its
location and convert this to a time zone.

• SatWatch adjusts the time and date as the watch owner
crosses time zones and political boundaries. For this
reason, SatWatch has no buttons or controls available to
the user.

• During blackout periods, SatWatch assumes that it does
not cross a time zone or a political boundary.

• SatWatch has a two-line display showing, on the top line,
the time (hour, minute, second, time zone) and on the
bottom line, the date (day, month, year).

• When political boundaries change, the watch owner may
upgrade the software using the WebifyWatch device and a
personal computer attached to the Internet.

Nonfunctional Requirements
• User visible aspects of the system not directly related to functional

behavior; includes quality and constraints.
– Usability
– Reliability
– Performance
– Supportability
– Implementation requirements
– Interface requirements
– Legal requirements

• Examples
– As the SatWatch has no buttons, no software faults requiring the

resetting of the watch should occur
– SatWatch should measure time within 1/100th of a second over 5 years
– SatWatch must be written using Java to comply with company policy
– SatWatch complies with the software and physical interface defined by

the WebifyWatch API

6

The Four C’s
• Requirements are continuously validated with the client and

user. This involves checking that the specs are:
– Complete

• All possible scenarios described, including exceptions
• Ex: Specs do not specify boundary behavior within GPS accuracy limits

– Consistency
• Requirements do not contradict itself
• Ex: WebifyWatch API requires user input, but there is a requirement of

no buttons
– Clarity

• No ambiguity
• Ex: Not clear if the watch deals with daylight savings time
• Ex: Time expressed in local time or GMT?

– Correctness
• Correctly describes the features and environment
• Ex: Specs indicate handling 24 time zones, but there are really > 24

Realism, Verifiability, Traceability

• Requirements specs must be
– Realistic

• Ex: “Product shall be error free”
– Verifiable

• Ex: “System should be user friendly”
• Ex: “Response time should usually be less than 2 seconds”
• Better ways to express requirements to be verifiable?

– Traceable
• Each requirement can be traced throughout the software

development to its corresponding system functions, and each
system function back to its set of requirements

– Ranked
• Rank requirements for importance or stability

– Usually “must have”, “desirable”, “optional” sufficient
– Stability could reflect likelihood of expected changes
– Gives developers the direction to focus attention

7

Categories of Elicitation

• Greenfield Engineering
– Development from scratch, no prior system exists

• Reeingineering
– Redesign and reimplementation of an existing system

• Interface Engineering
– Redesign of the interface of an existing system
– Legacy system left untouched except for its interface

Requirements Elicitation Activities

• Identifying actors
• Identifying scenarios
• Identifying use cases
• Refining use cases
• Identifying relationships among use cases
• Identifying non-functional requirements

8

Identifying Actors
• Actors represent external entities that interact with the

system
– May be human or an external system
– E.g. for SatWatch, may be the human user, GPS satellites,

WebifyWatch device, etc.
– Questions to identify actors:

• Which user groups are supported directly?
• Which user groups perform secondary functions, e.g. maintenance?
• What external hardware or software system will the system interact

with?

��������	

��

�	���������

�������

Scenarios
• “A narrative description of what people do and experience as they

try to make use of computer systems and applications” [M. Carrol,
Scenario-based Design, Wiley, 1995]

• A concrete, focused, informal description of a single feature of the
system used by specific actor(s).
– Do not attempt to describe all possible situations or descriptions of

decisions

• Scenarios can have many different uses during the software
lifecycle
– Requirements Elicitation: As-is scenario, visionary scenario
– Client Acceptance Test: Evaluation scenario
– System Deployment: Training scenario.

9

Types of Scenarios
• As-is scenario:

– Used in describing a current situation. Usually used in
re-engineering projects. The user describes the system.

• Visionary scenario:
– Used to describe a future system. Usually used in

greenfield engineering and reengineering projects.
– Can often not be done by the user or developer alone

• Evaluation scenario:
– User tasks against which the system is to be evaluated.

• Training scenario:
– Step by step instructions that guide a novice user

through a system

How do we find scenarios?

• Don’t expect the client to be verbal if the system
does not exist (greenfield engineering)

• Don’t wait for information even if the system
exists

• Engage in a dialectic approach (evolutionary,
incremental engineering)
– You help the client to formulate the requirements
– The client helps you to understand the requirements
– The requirements evolve while the scenarios are

being developed

10

Heuristics for finding Scenarios
• Ask yourself or the client the following questions:

– What are the primary tasks that the system needs to perform?
– What data will the actor create, store, change, remove or add in

the system?
– What external changes does the system need to know about?
– What changes or events will the actor of the system need to be

informed about?

• However, don’t rely on questionnaires alone.
• Insist on task observation if the system already exists

(interface engineering or reengineering)
– Ask to speak to the end user, not just to the software contractor
– Expect resistance and try to overcome it

Example: FRIEND Accident
Management System

• What needs to be done to report a “Cat in a Tree”
incident?

• What do you need to do if a person reports “Warehouse
on Fire?”

• Who is involved in reporting an incident?
• What does the system do, if no police cars are

available? If the police car has an accident on the way
to the “cat in a tree” incident?

• What do you need to do if the “Cat in the Tree” turns into
a “Grandma has fallen from the Ladder”?

• Can the system cope with a simultaneous incident report
“Warehouse on Fire?”

11

Scenario Example: Warehouse
on Fire

• Bob, driving down main street in his patrol car notices smoke coming out of
a warehouse. His partner, Alice, reports the emergency from her car.

• Alice enters the address of the building, a brief description of its location
(i.e., north west corner), and an emergency level. In addition to a fire unit,
she requests several paramedic units on the scene given that area appear
to be relatively busy. She confirms her input and waits for an
acknowledgment.

• John, the Dispatcher, is alerted to the emergency by a beep of his
workstation. He reviews the information submitted by Alice and
acknowledges the report. He allocates a fire unit and two paramedic units to
the Incident site and sends their estimated arrival time (ETA) to Alice.

• Alice received the acknowledgment and the ETA.

Observations about Warehouse
on Fire Scenario

• Concrete scenario
– Describes a single instance of reporting

a fire incident.
– Does not describe all possible situations

in which a fire can be reported.

• Participating actors
– Bob, Alice and John

12

Next goal, after the scenarios are
formulated:

• Identify Use Cases
– A scenario is an instance of a use case; i.e. a use case specifies all

possible scenarios for a given piece of functionality

• Find all the use cases in the scenario that specifies all possible
instances of how to report a fire
– Example: “Report Emergency “ in the first paragraph of the scenario is a

candidate for a use case

• Describe each of these use cases in more detail
– Participating actors
– Describe the Entry Condition
– Describe the Flow of Events
– Describe the Exit Condition
– Describe Exceptions
– Describe Special Requirements (Constraints, Nonfunctional

Requirements

ReportEmergency

Use Cases
• A use case is a flow of events in the system, including

interaction with actors
• It is initiated by an actor
• Each use case has a name
• Each use case has a termination condition
• Graphical Notation: An oval with the name of the use

case

Use Case Model: The set of all use cases specifying the complete
functionality of the system

13

Example: Use Case Model for
Incident Management

ReportEmergency

FieldOfficer Dispatcher
OpenIncident

AllocateResources

<initiate>

<participate>

<initiate>

<initiate>

Heuristics: How do I find use
cases?

• Select a narrow vertical slice of the system (i.e. one
scenario)
– Discuss it in detail with the user to understand the user’s

preferred style of interaction

• Select a horizontal slice (i.e. many scenarios) to define
the scope of the system.
– Discuss the scope with the user

• Use illustrative prototypes (mock-ups) as visual support
• Find out what the user does

– Task observation (Good)
– Questionnaires (Bad)

14

Use Case Example:
ReportEmergency

• Use case name: ReportEmergency
• Participating Actors:

– Field Officer (Bob and Alice in the Scenario)
– Dispatcher (John in the Scenario)

• Exceptions:
– The FieldOfficer is notified immediately if the connection

between her terminal and the central is lost.
– The Dispatcher is notified immediately if the connection between

any logged in FieldOfficer and the central is lost.
• Flow of Events: on next slide.
• Special Requirements:

– The FieldOfficer’s report is acknowledged within 30 seconds.
The selected response arrives no later than 30 seconds after it is
sent by the Dispatcher.

Use Case Example: ReportEmergency
Flow of Events

• The FieldOfficer activates the “Report Emergency” function of her
terminal. FRIEND responds by presenting a form to the officer.

• The FieldOfficer fills the form, by selecting the emergency level,
type, location, and brief description of the situation. The FieldOfficer
also describes possible responses to the emergency situation. Once
the form is completed, the FieldOfficer submits the form, at which
point, the Dispatcher is notified.

• The Dispatcher reviews the submitted information and creates an
Incident in the database by invoking the OpenIncident use case. The
Dispatcher selects a response and acknowledges the emergency
report.

• The FieldOfficer receives the acknowledgment and the selected
response.

15

Another Use Case Example: Allocate
a Resource

• Actors:
– Field Supervisor: This is the official at the emergency site....

– Resource Allocator: The Resource Allocator is responsible for
the commitment and decommitment of the Resources managed
by the FRIEND system. ...

– Dispatcher: A Dispatcher enters, updates, and removes
Emergency Incidents, Actions, and Requests in the system. The
Dispatcher also closes Emergency Incidents.

– Field Officer: Reports accidents from the Field

Another Use Case Example: Allocate a
Resource

• Use case name: AllocateResources
• Participating Actors:

– Field Officer (Bob and Alice in the Scenario)
– Dispatcher (John in the Scenario)
– Resource Allocator
– Field Supervisor

• Entry Condition
– The Resource Allocator has selected an available resource.
– The resource is currently not allocated

• Flow of Events
– The Resource Allocator selects an Emergency Incident.
– The Resource is committed to the Emergency Incident.

• Exit Condition
– The use case terminates when the resource is committed.
– The selected Resource is now unavailable to any other Emergency

Incidents or Resource Requests.
• Special Requirements

– The Field Supervisor is responsible for managing the Resources

16

Order of steps when formulating use
cases

• First step: name the use case
– Use case name: ReportEmergency

• Second step: Find the actors
– Generalize the concrete names (“Bob”) to participating actors

(“Field officer”)
– Participating Actors:

• Field Officer (Bob and Alice in the Scenario)
• Dispatcher (John in the Scenario)

• Third step: Then concentrate on the flow of events
– Use informal natural language

Use Case Associations

• A use case model consists of use cases and use case
associations
– A use case association is a relationship between use cases

• Important types of use case associations: Include,
Extends, Generalization

• Include
– A use case uses another use case (“functional decomposition”)

• Extends
– A use case extends another use case, just like in OOP

• Generalization
– An abstract use case has different specializations

17

<<Include>>: Functional
Decomposition• Problem:

– A function in the original problem statement is too complex to be
solvable immediately

• Solution:
– Describe the function as the aggregation of a set of simpler

functions. The associated use case is decomposed into smaller
use cases

ManageIncident

CreateIncident HandleIncident CloseIncident

<<include>>

<<Include>>: Reuse of Existing
Functionality• Problem:

– There are already existing functions. How can we reuse them?
• Solution:

– The include association from a use case A to a use case B
indicates that an instance of the use case A performs all the
behavior described in the use case B (“A delegates to B”)

• Example:
– The use case “ViewMap” describes behavior that can be used

by the use case “OpenIncident” (“ViewMap” is factored out)

ViewMap
OpenIncident

AllocateResources

<<include>>

<<include>>

Base Use
Case

Supplier
Use Case

Note: The base case cannot exist alone. It is always called with the
supplier use case

18

<Extend>> Association for Use Cases
• Problem:

– The functionality in the original problem statement needs to be
extended.

• Solution:
– An extend association from a use case A to a use case B

indicates that use case B is an extension of use case A.
• Example:

– The use case “ReportEmergency” is complete by itself , but
can be extended by the use case “ConnectionDown” for a
specific scenario in which the user requires special help

ReportEmergency

FieldOfficerf
ConnectionDown

<<extend>>

Note: The base use case can be executed without the use case extension
in extend associations.

Generalization association in use cases
• Problem:

– You have common behavior among use cases and want to factor
this out.

• Solution:
– The generalization association among use cases factors out

common behavior. The child use cases inherit the behavior and
meaning of the parent use case and add or override some
behavior.

• Example:
– Consider the use case “ValidateUser”, responsible for verifying

the identity of the user. The customer might require two
realizations: “CheckPassword” and “CheckFingerprint”

ValidateUser

CheckPassword

CheckFingerprint

Parent
Case Child

Use Case

19

How to Specify a Use Case
(Summary)

• Name of Use Case
• Actors

– Description of Actors involved in use case)
• Entry condition

– “This use case starts when…”
• Flow of Events

– Free form, informal natural language
• Exit condition

– “This use cases terminates when…”
• Exceptions

– Describe what happens if things go wrong
• Special Requirements

– Nonfunctional Requirements, Constraints

Identifying Nonfunctional
Requirements

• Usability
– What is the level of expertise

of the user?
– What user interface standards

are familiar?
– What documentation should

be provided?
• Reliability

– How reliable, available, and
robust should the system be?

– Are there safety
requirements?

– Are there security
requirements?

– How should the system handle
exceptions?

• Performance
– How responsive?
– Are any user tasks time

critical?
– Concurrent users?
– How large is a typical data

store for comparable
systems?

– What is the worst latency
possible?

• Supportability
– What are foreseen

extensions?
– Who maintains the system?
– Future plans for ports?

20

Identifying Nonfunctional
Requirements

• Implementation
– Are there constraints on

the hardware?
– Are there constraints

imposed by maintenance
or testing?

• Interface
– Should the system interact

with other systems?
– How will data be

imported/exported?
– What standards are in

place?

• Packaging
– Who installs the system?
– Time constraints on install?
– Other software

dependencies?
• Legal

– Licensing?
– Liability issues with system

failures?
– Royalties or licensing fees?

Other Elicitation Techniques
• Aside from scenario-based elicitation:

• Asking
– Interviews, Brainstorming, questionnaires, group discussions,

focus groups
• Outspoken users may bias the outcome
• Delphi technique: written information exchanged iteratively until

consensus reached

• Task Analysis
– Identify and analyze tasks
– Form into a hierarchy of subtasks carried out by people working in

the domain
– Stop at the point when users “refuse” to decompose tasks further

21

Other Elicitation Techniques
• Ethnography

– Study the people (users) in their natural settings
– Analyst becomes an apprentice
– Anthropologist in the jungle

• Form analysis
– Analyze any forms being used to gain information about the problem
– Forms provide info about domain data objects, properties, and

interrelations

• Natural language descriptions
– Operating instructions in writing
– Good for background but natural languages notorious for leading to

ambiguities
– Often natural language descriptions are not kept up to date

Other Elicitation Techniques

• Derivation from an existing system
– Use current system to formulate requirements of the

new system
– Use analogous system from another organization to

derive the requirements (domain analysis)
– Useful for identifying reusable components, concepts

and structures

• Prototyping
– Prototype constructed to elicit requirements as

discussed earlier

22

Requirements Specification

• Requirements Specification
– End product of the requirements engineering

phase
– Document specifies the system requirements

• Informal to precise, mathematical representation
• Serves as a mechanism to communicate with

users
– May even take on different forms for different audiences

• Starting point for design phase

IEEE Standard 830

• IEEE Standard 830 gives a template for
structuring requirements

• Textbook uses a variant of IEEE 830
focused around scenarios and use cases

• See webpage for details and a similar
template
– http://wwwbruegge.in.tum.de/OOSE/Requirem

entsAnalysisDocumentTemplate
• Should add ranking of requirements

23

Requirements Analysis Document

1. Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions, acronyms, abbreviations
1.4 References
1.5 Overview

2. Current System
3. Proposed System

3.1 Overview
3.2 Functional requirements
3.3 Nonfunctional requirements
3.4 System models

3.4.1 Scenarios
3.4.2 Use case model
3.4.3 Object model
3.4.4 Dynamic model
3.5.5 User interface – navigational paths and screen mock-ups

Discussed in chapter 5

Summary of Lessons
• Requirements elicitation involves constant

switching between perspectives
– High-level vs. detailed
– Client vs. Developer
– Activity vs. Entity

• Requirements elicitation requires a substantial
involvement from the client

• Scenarios:
– Great way to establish communication with client
– Different types of scenarios: As-Is, visionary, evaluation

and training
– Use cases: Abstraction of scenarios

• Developers should not assume that they know
what the client wants

