
1 

Introduction to Refactoring 

Refactoring 

• Refactoring is: 
– restructuring (rearranging) code in a series of small, semantics-

preserving transformations (i.e. the code keeps working) in order to 
make the code easier to maintain and modify 

• Refactoring is not just arbitrary restructuring 
– Code must still work 

– Small steps only so the semantics are preserved (i.e. not a major re-
write) 

– Unit tests to prove the code still works 

– Code is  
• More loosely coupled 

• More cohesive modules  

• More comprehensible  

• There are numerous well-known refactoring techniques 
– You should be at least somewhat familiar with these before inventing 

your own 

– Refactoring “catalog” 



2 

When to refactor 

• You should refactor: 

– Any time that you see a better way to do things 

• “Better” means making the code easier to understand and to 

modify in the future 

– You can do so without breaking the code 

• Unit tests are essential for this 

• You should not refactor: 

– Stable code that won’t need to change 

– Someone else’s code  

• Unless the other person agrees to it or it belongs to you 

• Not an issue in Agile Programming since code is communal 

The refactoring environment 
• Traditional software engineering is modeled after traditional 

engineering practices (= design first, then code) 

• Assumptions: 

– The desired end product can be determined in advance 

– Workers of a given type (plumbers, electricians, etc.) are interchangeable 

• Agile software engineering is based on different assumptions: 

– Requirements (and therefore design) change as users become acquainted 

with the software 

– Programmers are professionals with varying skills and knowledge 

– Programmers are in the best position for making design decisions 

• Refactoring is fundamental to agile programming 

– Refactoring is sometimes necessary in a traditional process, when the 

design is found to be flawed 



3 

Where did refactoring come 

from? 

• Ward Cunningham and Kent Beck influential 
people in Smalltalk 

• Kent Beck – responsible for Extreme 
Programming 

• Ralph Johnson a professor at U of Illinois and 
part of “Gang of Four” 

• Bill Opdyke – Ralph’s Doctoral Student 

• Martin Fowler  -  http://www.refactoring.com/ 
– Refactoring : Improving The Design Of Existing 

Code 

Back to refactoring 

• When should you refactor? 

– Any time you find that you can improve the design of 

existing code 

– You detect a “bad smell” (an indication that something 

is wrong) in the code 

• When can you refactor? 

– You should be in a supportive environment (agile 

programming team, or doing your own work) 

– You are familiar with common refactorings 

– Refactoring tools also help 

– You should have an adequate set of unit tests 

http://www.refactoring.com/


4 

Refactoring Process 

• Make a small change 

– a single refactoring 

• Run all the tests to ensure everything still 

works 

• If everything works, move on to the next 

refactoring 

• If not, fix the problem, or undo the change, 

so you still have a working system 

Code Smells 

• If it stinks, change it 
– Code that can make the design harder to change 

• Examples: 
– Duplicate code 

– Long methods 

– Big classes 

– Big switch statements 

– Long navigations (e.g., a.b().c().d())  

– Lots of checking for null objects 

– Data clumps (e.g., a Contact class that has fields for address, 
phone, email etc.) - similar to non-normalized tables in relational 
design  

– Data classes (classes that have mainly fields/properties and little 
or no methods)  

– Un-encapsulated fields (public member variables) 



5 

Example 1: switch statements 

• switch statements are very rare in properly 

designed object-oriented code 

– Therefore, a switch statement is a simple and 

easily detected “bad smell” 

– Of course, not all uses of switch are bad 

– A switch statement should not be used to 

distinguish between various kinds of object 

• There are several well-defined refactorings 

for this case 

– The simplest is the creation of subclasses 

Example 1, continued 

• class Animal { 
   final int MAMMAL = 0, BIRD = 1, REPTILE = 2; 
   int myKind;  // set in constructor 
   ... 
   String getSkin() { 
      switch (myKind) { 
         case MAMMAL: return "hair"; 
         case BIRD: return "feathers"; 
         case REPTILE: return "scales"; 
         default: return “skin"; 
      } 
   } 
} 



6 

Example 1, improved 

   class Animal { 
     String getSkin() { return “skin"; } 
} 
class Mammal extends Animal { 
     String getSkin() { return "hair"; } 
} 
class Bird extends Animal { 
     String getSkin() { return "feathers"; } 
} 
class Reptile extends Animal { 
     String getSkin() { return "scales"; } 
} 
 

How is this an improvement? 

• Adding a new animal type, such as Amphibian, 

does not require revising and recompiling 

existing code 

• Mammals, birds, and reptiles are likely to differ 

in other ways, and we’ve already separated 

them out (so we won’t need more switch 

statements) 

• We’ve gotten rid of the flags we needed to tell 

one kind of animal from another 

• We’re now using Objects the way they were 

meant to be used 



7 

Example 2: Encapsulate Field 

• Un-encapsulated data is a no-no in OO application 

design. Use property get and set procedures to provide 

public access to private (encapsulated) member 

variables. 

public class Course  

{ 

 public List students;  

 

} 

int classSize = course.students.size(); 

public class Course  

{ 

 private List students;  

 public List getStudents() 

 { 

    return students; 

 } 

 public void setStudents(List s)  

 { 

     students = s; 

  } 

} 

int classSize = course.getStudents().size(); 

Encapsulating Fields 

• I have a class with 10 fields.  This is a pain 

to set up for each one. 

• Refactoring Tools 

– See NetBeans/Visual Studio refactoring 

examples 

 

– Also:  

• Rename Method 

• Change Method Parameters 



8 

3.  Extract Class 

• Break one class into two, e.g. Having the phone details as part of 

the Customer class is not a realistic OO model, and also breaks the 

Single Responsibility design principle. We can refactor this into two 

separate classes, each with the appropriate responsibility. 

public class Customer 

{ 

 private String name;  

 private String workPhoneAreaCode;  

 private String workPhoneNumber;  

} 

public class Customer 

{  

private String name;  

private Phone workPhone;  

}  

 

public class Phone  

{  

private String areaCode;  

private String number;  

} 

4. Extract Interface 
• Extract an interface from a class. Some clients may need to know a 

Customer’s name, while others may only need to know that certain objects 
can be serialized to XML. Having toXml() as part of the Customer interface 
breaks the Interface Segregation design principle which tells us that it’s 
better to have more specialized interfaces than to have one multi-purpose 
interface. 

public class Customer  

{  

private String name;  

 

public String getName(){ return name; }  

 

public void setName(String string)  

{ name = string; } 

  

public String toXML() 

{ return "<Customer><Name>" +            

 name + "</Name></Customer>";  

 }  

} 

public class Customer implements SerXML 

{  

private String name;  

 

public String getName(){ return name; }  

 

public void setName(String string)  

{ name = string; } 

  

public String toXML() 

{ return "<Customer><Name>" +            

 name + "</Name></Customer>";  

 }  

} 

public interface SerXml {  

   public abstract String toXML();  

} 



9 

5. Extract Method 

• Sometimes we have methods that do too much. The 

more code in a single method, the harder it is to 

understand and get right. It also means that logic 

embedded in that method cannot be reused elsewhere.  

The Extract Method refactoring is one of the most useful 

for reducing the amount of duplication in code. 

public class Customer 

{ 

  void int foo() 

  { 

     …  

     // Compute score 

    score = a*b+c; 

    score *= xfactor; 

  } 

} 

public class Customer 

{ 

  void int foo() 

  { 

     …  

    score = ComputeScore(a,b,c,xfactor); 

   } 

 

   int ComputeScore(int a, int b, int c, int x) 

   { 

      return (a*b+c)*x; 

   } 

} 

6. Extract Subclass 

• When a class has features (attributes and methods) that would only 

be useful in specialized instances, we can create a specialization of 

that class and give it those features. This makes the original class 

less specialized (i.e., more abstract), and good design is about 

binding to abstractions wherever possible. 

public class Person  

{  

 private String name; 

 private String jobTitle;  

} 

public class Person  

{  

 protected String name;  

}  

 

public class Employee extends Person  

{  

 private String jobTitle;  

} 



10 

7. Extract Super Class 

• When you find two or more classes that share common features, 

consider abstracting those shared features into a super-class. 

Again, this makes it easier to bind clients to an abstraction, and 

removes duplicate code from the original classes. 

public class Employee  

{  

  private String name;  

  private String jobTitle;  

}  

 

public class Student  

{  

  private String name;  

  private Course course;  

} 

public abstract class Person  

{  

  protected String name;  

}  

 

public class Employee extends Person  

{  

  private String jobTitle;  

}  

 

public class Student extends Person  

{  

  private Course course;  

} 

8.  Form Template Method - Before 

• When you find two methods in subclasses that perform the same 

steps, but do different things in each step, create methods for those 

steps with the same signature and move the original method into the 

base class 

public abstract class Party { }  

 

 

 

public class Person extends Party  

{  

 private String firstName;  

 private String lastName;  

 private Date dob;  

 private String nationality;  

 public void printNameAndDetails()  

 {  

   System.out.println("Name: " + firstName + " " + lastName);  

   System.out.println("DOB: " + dob.toString() + ", Nationality: " + nationality);  

  }  

}  

 

public class Company extends Party  

{  

  private String name;  

  private String companyType;  

  private Date incorporated;  

  public void PrintNameAndDetails()  

  {  

   System.out.println("Name: " + name + " " + companyType);  

   System.out.println("Incorporated: " + incorporated.toString());  

  }  

} 



11 

Form Template Method - Refactored 

public abstract class Party  

{  

 public void PrintNameAndDetails()  

 {  

   printName();  

   printDetails();  

 }  

 public abstract void printName();  

 public abstract void printDetails();  

}  

 

public class Person extends Party  

{  

  private String firstName;  

  private String lastName;  

  private Date dob;  

  private String nationality;  

  public void printDetails()  

  {  

    System.out.println("DOB: " + dob.toString() + ", Nationality: " + nationality);  

  }  

  public void printName()  

  {  

    System.out.println("Name: " + firstName + " " + lastName);  

  }  

}  

public class Company extends Party  

{  

  private String name;  

  private String companyType;  

  private Date incorporated;  

  public void printDetails()  

  {  

     System.out.println("Incorporated: " + incorporated.toString());  

  }  

  public void printName() 

  { 

     System.out.println("Name: " + name + " " + companyType);  
  } 

} 

9. Move Method - Before 

• If a method on one class uses (or is used by) another class more 

than the class on which its defined, move it to the other class 

public class Student  

{  

  public boolean isTaking(Course course)  

  {  

     return (course.getStudents().contains(this));  

   }  

}  

 

public class Course  

{  

  private List students;  

  public List getStudents()  

  {  

    return students;  

  }  

} 



12 

Move Method - Refactored 

• The student class now no longer needs to know about the Course 

interface, and the isTaking() method is closer to the data on which it 

relies - making the design of Course more cohesive and the overall 

design more loosely coupled 

public class Student  

{  

}  

 

public class Course  

{  

  private List students;  

  public boolean isTaking(Student student)  

  {  

     return students.contains(student);  

  }  

} 

10.  Introduce Null Object 

• If relying on null for default behavior, use inheritance 

instead 

public class User  

{  

  Plan getPlan() 

  { 

      return plan; 

  }  

}  

public class User 

{  

  Plan getPlan() 

  { 

    return plan; 

  } 

}  

 

public class NullUser extends User 

{  

  Plan getPlan() 

  { 

     return Plan.basic(); 

  } 

}  

 

if (user == null) 

    plan = Plan.basic(); 

else 

   plan = user.getPlan(); 

 



13 

11.  Replace Error Code with 

Exception 

• A method returns a special code to indicate an error is 

better accomplished with an Exception. 

 
int withdraw(int amount)  

{ 

  if (amount > balance) 

 return -1; 

  else { 

 balance -= amount; 

 return 0; 

         } 

} 

void withdraw(int amount)  

   throws BalanceException 

{ 

  if (amount > balance)  

  { 

  throw new BalanceException(); 

   } 

  balance -= amount; 

} 

12.  Replace Exception with Test 

• Conversely, if you are catching an exception that could 

be handled by an if-statement, use that instead. 

double getValueForPeriod (int periodNumber) 

 { 

  try  

  { 

     return values[periodNumber]; 

  }  

  catch (ArrayIndexOutOfBoundsException e) 

  { 

    return 0; 

  } 

} double getValueForPeriod (int periodNumber) 

 { 

   if (periodNumber >= values.length) return 0; 

   return values[periodNumber]; 

 } 



14 

13.  Nested Conditional with Guard 

• A method has conditional behavior that does not make clear what 

the normal path of execution is.  Use Guard Clauses for all the 

special cases. 

 double getPayAmount() { 

  double result; 

  if (isDead) result = deadAmount(); 

  else { 

 if (isSeparated) result = separatedAmount(); 

 else { 

  if (isRetired) result = retiredAmount(); 

  else result = normalPayAmount(); 

 } 

  } 

  return result; 

} 

double getPayAmount() { 

 if (isDead) return deadAmount(); 

 if (isSeparated) return separatedAmount(); 

 if (isRetired) return retiredAmount(); 

 return normalPayAmount(); 

}; 

14.  Replace Parameter with 

Explicit Method 
• You have a method that runs different code depending on the values 

of an enumerated parameter.  Create a separate method for each 

value of the parameter. 

 
void setValue (String name, int value) { 

  if (name.equals("height")) { 

   height = value; 

   return; 

  } 

  if (name.equals("width")) { 

    width = value; 

    return; 

  } 

  Assert.shouldNeverReachHere(); 

} 

void setHeight(int arg)  

{ 

    height = arg; 

} 

 

void setWidth (int arg)  

{ 

    width = arg; 

} 



15 

15.  Replace Temp with Query 

• You are using a temporary variable to hold the result of an 

expression.  Extract the expression into a method. Replace all 

references to the temp with the expression. The new method can 

then be used in other methods and allows for other refactorings. 

 
  double basePrice = quantity * itemPrice; 

  if (basePrice > 1000) 

   return basePrice * 0.95; 

  else 

   return basePrice * 0.98; 

  if (basePrice() > 1000) 

   return basePrice() * 0.95; 

  else 

   return basePrice() * 0.98; 

... 

 double basePrice() { 

  return quantity * itemPrice; 

 } 

  

16. Rename Variable or Method 

• Perhaps one of the simplest, but one of the most useful 

that bears repeating: If the name of a method or variable 

does not reveal its purpose then change the name of the 

method or variable. 

public class Customer 

{ 

   public double getinvcdtlmt(); 

} 

public class Customer 

{ 

   public double getInvoiceCreditLimit(); 

} 



16 

More on Refactorings 

• Refactoring Catalog 
– http://www.refactoring.com/catalog  

• Java Refactoring Tools 
– NetBeans 4+ – Built In 

– JFactor – works with VisualAge and JBuilder 

– RefactorIt – plug-in tool for NetBeans, Forte, JBuilder and 
JDeveloper. Also works standalone.  

– JRefactory – for jEdit, NetBeans, JBuilder or standalone 

• Visual Studio 2005+ 
– Refactoring Built In 

• Encapsulate Field, Extract Method, Extract Interface, Reorder 
Parameters, Remove Parameter, Promote Local Var to Parameter, 
more. 

Refactoring Exercise 

• Refactor the Trivia Game code 
import java.util.ArrayList; 

 

public class TriviaData 

{ 

 private ArrayList<TriviaQuestion> data; 

 

 public TriviaData() 

 { 

  data = new ArrayList<TriviaQuestion>(); 

 } 

 

 public void addQuestion(String q, String a, int v, int t) 

 { 

  TriviaQuestion question = new TriviaQuestion(q,a,v,t); 

  data.add(question); 

 } 

 

 public void showQuestion(int index) 

 { 

  TriviaQuestion q = data.get(index); 

  System.out.println("Question " + (index +1) + ".  " + q.value + " points."); 

  if (q.type == TriviaQuestion.TRUEFALSE) 

  { 

   System.out.println(q.question); 

   System.out.println("Enter 'T' for true or 'F' for false."); 

  } 

  else if (q.type == TriviaQuestion.FREEFORM) 

  { 

   System.out.println(q.question); 

  } 

 } 

 



17 

TriviaData.java  TriviaQuestion.java 

 public int numQuestions() 

 { 

  return data.size(); 

 } 

 

 public TriviaQuestion getQuestion(int index) 

 { 

  return data.get(index); 

 } 

} 

 

public class TriviaQuestion 

{ 

 public static final int TRUEFALSE = 0; 

 public static final int FREEFORM = 1; 

 

 public String question;  // Actual question 

 public String answer;  // Answer to question 

 public int value;   // Point value of question 

 public int type;   // Question type, TRUEFALSE or FREEFORM 

 

 public TriviaQuestion() 

 { 

  question = ""; 

  answer = ""; 

  value = 0; 

  type = FREEFORM; 

 } 

 

 public TriviaQuestion(String q, String a, int v, int t) 

 { 

  question = q; 

  answer = a; 

  value = v; 

  type = t; 

 } 

} 

TriviaGame.java 
import java.io.*; 

import java.util.Scanner; 

 

public class TriviaGame 

{ 

 public TriviaData questions; // Questions 

 

 public TriviaGame() 

 { 

 // Load questions 

 questions = new TriviaData(); 

 questions.addQuestion("The possession of more than two sets of chromosomes is termed?", 

  "polyploidy", 3, TriviaQuestion.FREEFORM); 

 questions.addQuestion("Erling Kagge skiied into the north pole alone on January 7, 1993.", 

  "F", 1, TriviaQuestion.TRUEFALSE); 

 questions.addQuestion("1997 British band that produced 'Tub Thumper'", 

  "Chumbawumba", 2, TriviaQuestion.FREEFORM); 

 questions.addQuestion("I am the geometric figure most like a lost parrot", 

  "polygon", 2, TriviaQuestion.FREEFORM); 

 questions.addQuestion("Generics were introducted to Java starting at version 5.0.", 

  "T", 1, TriviaQuestion.TRUEFALSE); 

 } 

 



18 

TriviaGame.java 
// Main game loop 

public static void main(String[] args) 

{ 

 int score = 0;   // Overall score 

 int questionNum = 0; // Which question we're asking 

 TriviaGame game = new TriviaGame(); 

 Scanner keyboard = new Scanner(System.in); 

 // Ask a question as long as we haven't asked them all 

 while (questionNum < game.questions.numQuestions()) 

 { 

 // Show question 

 game.questions.showQuestion(questionNum); 

 // Get answer 

 String answer = keyboard.nextLine(); 

 // Validate answer 

 TriviaQuestion q = game.questions.getQuestion(questionNum); 

 if (q.type == TriviaQuestion.TRUEFALSE) 

 { 

  if (answer.charAt(0) == q.answer.charAt(0)) 

  { 

   System.out.println("That is correct!  You get " + q.value + " points."); 

   score += q.value; 

  } 

  else 

  { 

   System.out.println("Wrong, the correct answer is " + q.answer); 

  } 

 } 

  

 

TriviaGame.java 

else if (q.type == TriviaQuestion.FREEFORM) 

 { 

  if (answer.toLowerCase().equals(q.answer.toLowerCase())) 

  { 

   System.out.println("That is correct!  You get " + q.value + " points."); 

   score += q.value; 

  } 

  else 

  { 

   System.out.println("Wrong, the correct answer is " + q.answer); 

  } 

 } 

 System.out.println("Your score is " + score); 

 questionNum++; 

 } 

 System.out.println("Game over!  Thanks for playing!"); 

 } 

} 


