
1

Rationale Management

Chapter 12

An aircraft example

A320

♦ First fly-by-wire passenger aircraft

♦ 150 seats, short to medium haul

A319 & A321

♦ Derivatives of A320

♦ Same handling as A320

Design rationale

♦ Reduce pilot training & maintenance costs

♦ Increase flexibility for airline

2

An aircraft example (2)

A330 & A340

♦ Long haul and ultra long haul

♦ 2x seats, 3x range

♦ Similar handling than A320 family

Design rationale

♦ With minimum cross training, A320 pilots can be certified to
fly A330 and A340 airplanes

Consequence

♦ Any change in these five airplanes must maintain this similarity

Overview: rationale

♦ What is rationale?

♦ Why is it critical in software engineering?

♦ Centralized traffic control example

♦ Rationale in project management

� Consensus building

� Consistency with goals

� Rapid knowledge construction

♦ Summary

3

What is rationale?

Rationale is the reasoning that lead to the system.

Rationale includes:

♦ the issues that were addressed,

♦ the alternatives that were considered,

♦ the decisions that were made to resolve the issues,

♦ the criteria that were used to guide decisions, and

♦ the debate developers went through to reach a decision.

♦ Rationale can be used at any phase of the development
lifecycle but the focus is generally on system design

Levels of Rationale Capture

♦ No explicit rationale capture

� Resources spent only on development, rationale present only in
developer’s memories and in records such as email, memos, etc.

♦ Rationale reconstruction
� Resources are spent recovering design rationale during

documentation. Discarded alternatives and argumentation are
generally not captured.

♦ Rationale capture

� Major effort is spent in capturing rationale as decisions are made.
Rationale information is documented as a separate model and cross-
referenced with other models.

♦ Rationale integration
� The rationale model becomes the central model developers use as a

live and searchable information base. The system models represent
the sum of the decisions captured in the information base.

4

Why is rationale important in software engineering?

Many software systems are like aircraft:

They result from a large number of decisions taken over an
extended period of time.

♦ Evolving assumptions

♦ Legacy decisions

♦ Conflicting criteria

-> high maintenance cost

-> loss & rediscovery of information

Uses of rationale in software engineering

♦ Improve design support

� Avoid duplicate evaluation of poor alternatives

� Make consistent and explicit trade-offs

♦ Improve documentation support

� Makes it easier for non developers (e.g., managers, lawyers,
technical writers) to review the design

♦ Improve maintenance support

� Provide maintainers with design context

♦ Improve learning
� New staff can learn the design by replaying the decisions that

produced it

5

Representing rationale: issue models

Issue modeling of dialectic activity is the most promising
approach so far:

♦ More information than documents: captures trade-offs and
discarded alternatives that design documents do not.

♦ Less messy than communication records: communication
records contain everything.

Issue models represent arguments in a semi-structure form:

♦ Nodes represent argument steps

♦ Links represent their relationships

Decision: Smart Card + PIN

ATM Example

Question: Alternative Authentication Mechanisms?

References: Service: Authenticate

Option 1: Account number

Option 2: Finger print reader

Option 3: Smart Card + PIN

Criteria 1:
ATM Unit Cost

Criteria 2:
Privacy

+ +

+–

+ –

6

Centralized traffic control

♦ CTC systems enable dispatchers to monitor and control trains
remotely

♦ CTC allows the planning of routes and re-planning in case of
problems

T1291>

<T1515

Signals

Track circuits

Switches

Trains

S1

S2 S3

S4

SW1 SW2

Centralized traffic control (2)

CTC systems are ideal examples of rationale capture:

♦ Long lived systems (some systems include relays installed last
century)

� Extended maintenance life cycle

♦ Although not life critical, downtime is expensive

� Low tolerance for bugs

� Transition to mature technology

7

display?:Issueinput?:Issue

Issues

♦ Issues are concrete problem which usually do not have a unique, correct
solution (so called “wicked” problems).

♦ Issues are phrased as questions. Should focus only on the problem, not on
possible alternatives to address it.

How should the dispatcher input

commands?
How should track sections be

displayed?

How should the dispatcher be

notified of a train delay?

train delay?:Issue

input?:Issue

addressed byaddressed byaddressed by

display?:Issue

text-based:Proposal point&click:Proposal

Proposals

♦ Proposals are possible solutions to issues.

♦ One proposal can be shared across multiple issues.

♦ Proposals enable developers to explore the solution space thoroughly.

The interface for the dispatcher could be

realized with a point & click interface.

The display used by the dispatcher can be a

text only display with graphic characters to

represent track segments.

8

input?:Issue

terminal?:Issue

addressed byaddressed byaddressed by

raises

display?:Issue

text-based:Proposal point&click:Proposal

Consequent issue

♦ Consequent issues are issues raised by the introduction of a
proposal.

Which terminal emulation should be used

for the display?

Proposals

♦ A proposal should only contain information related to the
solution, not its value, advantages, and disadvantages

� These are addressed by criteria and arguments

♦ A proposal need not be a good or valid answer

� This allows developers to explore the solution space thoroughly

� Proposals are used to represent the solution to the problem as well
as discarded alternatives

9

input?:Issue

availability$:Criterionusability$:Criterion

terminal?:Issue

addressed byaddressed byaddressed by

raises meets

fails

meets

fails

display?:Issue

text-based:Proposal point&click:Proposal

Criteria

♦ A criteria represent a goodness measure.
� Not to be confused with an argument or issue

♦ Criteria are often design goals or nonfunctional
requirements.

The time to input commands should be

less than two seconds.

The CTC system should have at least a 99%

availability.

Criteria

♦ Associations linking proposals and their criteria may represent
a trade-off

� In our example, each proposal maximizes one of the two criteria

� The issue is to decide which criteria has a higher priority, or find a
new proposal

10

Arguments

♦ Arguments represent the debate developers went through to
arrive to resolve the issue.

♦ Arguments can support or oppose any other part of the
rationale.

♦ Arguments constitute the most part of rationale.

Arguments (2)

input?:Issue

availability$:Criterionusability$:Criterion

terminal?:Issue

addressed byaddressed byaddressed by

raises meets

fails

meets

fails

availability-first!:Argument

is supported by

is opposed by

display?:Issue

text-based:Proposal point&click:Proposal

Point&click interfaces are more complex to implement than text-based interfaces. Hence, they

are also more difficult to test. The point&click interface risksintroducing fatal errors in the

system that would offset any usability benefit the interface would provide.

11

Resolutions

♦ Resolutions represent decisions.

♦ A resolution summarizes the chosen alternative and the
argument supporting it.

♦ A resolved issue is said to be closed.

♦ A resolved issue can be re-opened if necessary, in which case
the resolution is demoted.

Resolutions (2)

input?:Issue

availability$:Criterionusability$:Criterion

terminal?:Issue

addressed byaddressed byaddressed by

raises meets

fails

meets

fails

availability-first!:Argument

is supported by

is opposed by

text-based&keyboard
:Resolution

resolvesresolves

display?:Issue

text-based:Proposal point&click:Proposal

We select a text-based display and a keyboard input for the
traffic control user interface. The terminal emulation should
provide line characters that allow track circuits to be drawn in

text mode.

This decision is motivated by the relative simplicity and
reliability of text-based interfaces compared with point-and-
click interfaces. We are aware that this decision costs some
usability, as fewer data can be presented to the dispatcher and
issuing commands by the dispatcher will be slower and more prone

to errors.

12

Implementing Resolutions

♦ A resolution is implemented in terms of one or more action
items

� A person is assigned to an action item with a completion date

investigateTerm:ActionItemupdateSDD:ActionItem

text-based & keyboard
:Resolution

is implemented by is implemented by

For Alice. Update the SDD
to reflect the text-

based&keyboard resolution.

For Dave. Investigate different
terminal emulation and their advantages

for displaying TrackSections.

Issue-Based Models and Systems

♦ We’ve just discussed a general approach to capturing rationale
using a UML style syntax

♦ Several models have been proposed to capture rationale

� IBIS – Issue Based Information System (Kunz & Rittel, 1970)

� DRL - Decision Representation Language (Lee, 1990)

� QOC – Questions, Options, and Criteria (MacLean, 1991)

� NFR Framework (Chung, 1999)

13

IBIS Model

♦ Three nodes, but seven types of links

♦ Did not originally include Criterion or Resolution

Issue

Position Argument

responds-to
suggests

questionsquestions
suggests

objects-to
supports

generalizes
replaces

* * *

* * *
*

* *

*
*

* *

*

*

Decision Representation Language

♦ Seven types of nodes and fifteen types of links

Decision Problem

Alternative

Goal

AchievesLink

Claim

Claim

QuestionProcedure

is a good alternative for

achieves

supports

denies

is a result of

is an answering

procedure for

denies

supports
presupposes

raises
answers

*

*
*

* * * *

* *
*

14

Questions, Options, Criteria

♦ Designed for capturing rationale after the fact (e.g., quality
assessment).

♦ QOC emphasizes criteria

Option ! Criterion $

Question ?

positive

assessment +

negative

assessment -

consequent question

response

Argument .

supports +

objects-to -

supports +

objects-to -

Capturing Rationale in Meetings

♦ Needs a dedicated person to take minutes

♦ Publish agenda prior to meeting

15

Agenda Example

AGENDA: Integration of access control and notification

1. Purpose

The first revisions of the hardware/software mapping and the persistent storage design have been

completed. The access control model needs to be defined and its integration with the current subsystems,

such as NotificationService and TrackingSubsystem, needs to be defined.

2. Desired outcome

Resolve issues about the integration of access control with notification.

3. Information sharing [Allocated time: 15 minutes]

AI[1]: Dave: Investigate the access control model provided by the middleware.

4. Discussion [Allocated time: 35 minutes]

I[1]: Can a dispatcher see other dispatchers’ TrackSections?

I[2]: Can a dispatcher modify another dispatchers’ TrackSections?

I[3]: How should access control be integrated with TrackSections and NotificationService?

5. Wrap up [Allocated time: 5 minutes]

Review and assign new action items.

Meeting critique.

Chronological Minutes Example

CHRONOLOGICAL MINUTES: Integration of access control and notification

4. Discussion

...

I[3]: How should access control be integrated with TrackSections and NotificationService?

Dave: The TrackSection maintains an access list. The notification service asks the

TrackSection about who has access.

Alice: We should probably reverse the dependency between TrackSection

and NotificationService. Instead, the UIClient requests subscriptions from the

TrackSection, which checks for access and then calls the NotificationService.

This way, all protected methods are in one place.

Dave: This way the TrackSection can also more easily unsubscribe dispatchers when

their access is revoked.

Ed: Hey, no need for access control in NotificationService: Dispatchers can see all

TrackSections. As long as the NotificationService is not used for changing

the TrackSection state, there is no need to restrict subscriptions.

Alice: But thinking about the access control on notification would be more general.

Ed: But more complex. Let’s just separate access control and notification at this point

and revisit the issue if the requirements change.

Alice: Ok. I’ll take care of revising the TrackingSubsystem API.

...

16

Structured Minutes Example

♦ Produced after review of chronological minutes and distributed
to all parties

4. Discussion

...

I[3]: How should access control be integrated with TrackSections and NotificationService?

P[3.1]: TrackSections maintain an access list of who can examine or modify the state

of the TrackSection. To subscribe to events, a subsystem sends a request to

the NotificationService, which in turns sends a request to the corresponding

TrackSection to check access.

P[3.2]: TrackSections host all protected operations. The UIClient requests

subscription to TrackSection events by sending a request to the TrackSection,

which checks access and sends a request to the NotificationService.

A[3.1] for P[3.2]: Access control and protected operations are centralized

into a single class.

P[3.3]: There is no need to restrict the access to the event subscription. The UIClient

requests subscriptions directly from the NotificationService. The

NotificationService need not check access.

A[3.2] for P[3.3] Dispatchers can see the state of any TrackSections (see

R[1]).

A[3.3] for P[3.3]: Simplicity.

R[3]: P[3.3]. See action item AI[2].

...

Asynchronous Rationale Capture

♦ Can also capture rationale asynchronously via issue database

♦ Developers can access and post issues, proposals, arguments, and resolutions
with web forms

♦ Can be combined with real-time capture; structured minutes results in creation
of issues in the issue database

17

Overview: rationale

♦ What is rationale?

♦ Why is it critical in software engineering?

♦ Centralized traffic control example

♦ Rationale in project management

� Consensus building (WinWin)

� Consistency with goals

� Rapid knowledge construction

♦ Summary

Consensus building

Problem

♦ Any realistic project suffers the tension of conflicting goals

� Stakeholders come from different background

� Stakeholders have different criteria

� Client: business process (cost and schedule)

� User: functionality

� Developer: architecture

� Manager: development process (cost and schedule)

18

Consensus building: WinWin

♦ Incremental, risk-driven spiral process

� Identification of stakeholders

� Identification of win conditions

� Conflict resolution

♦ In meetings or asynchronous groupware tool

� Stakeholders post win conditions

� Facilitator detects conflict

� Stakeholders discuss alternatives

� Stakeholders make agreements

Consensus building: Process

2. Identify stakeholders’
win conditions

3. Reconcile win conditions.
Establish alternatives.

4. Evaluate & resolve risks.

5. Define solution

6. Validate

7. Review & commit

1. Identify stakeholders

19

Consensus building: WinWin tool

Harvard Method of Negotiation

♦ Traditional negotiation

� Defend one’s position, cite advantages, denigrate other’s position
citing its disadvantages

� Time consuming and moves in small steps toward consensus

♦ Harvard Method

� Attempt to move more quickly to consensus by avoiding credibility
issues and allow people to change positions

20

Harvard Method of Negotiation

♦ Separate developers from proposals

� Developers can spend a lot of time developing a proposal to the point that
criticism is taken as personal criticism

� Can separate by putting multiple developers on the same proposal or all
concerned parties participate

� Separate design and implementation work

� Ensure negotiation occurs before implementation

♦ Focus on criteria, not on proposals

� Developers develop proposals with criteria in mind; their criteria may be
addressed, but not necessarily other developers’ criteria.

� Making criteria explicit exposes the root of conflicts and allow a
compromise to be negotiated

♦ Take into account all criteria instead of maximizing a single one

� Criteria reflect different interests or parties; picking one over others
alienates the other participants

Conflict Resolution Strategies

♦ Majority Wins

� Majority vote decides deadlock

� Assumes the opinion of each participant matters equally and that
statistically the group usually makes the right decision

♦ Owner has last word

� The person who raised the issue or has the largest stake is
responsible for deciding the outcome

♦ Management is always right
� Fall back on the org hierarchy and let the manager impose a

decision

♦ Expert is always right
� External or third party expert makes the decision

♦ Time decides

� Leave issue unresolved and time pressure forces a decision

21

Conflict Resolution Strategies

♦ Majority Wins

� Generally does not work well; inconsistent results and decisions not well
supported by the rest of the participants

♦ Owner has last word

� Generally does not work well; inconsistent results and decisions not well
supported by the rest of the participants

♦ Management is always right

� Generally leads to better technical decisions and better consensus when the
manager is sufficiently knowledgeable

♦ Expert is always right

� Generally leads to better technical decisions and better consensus when the
manager is sufficiently knowledgeable

♦ Time decides

� Fallback; may result in costly rework or disaster

In practice, first attempt to reach consensus, fall back on an

expert or management strategy; if fails, let time decide or
take a majority vote.

Summary

♦ Rationale important to capture for long-term project maintenance and future
development

♦ Consensus techniques to negotiate resolutions for rationale issues

♦ Major Challenges

� Technical: Rationale models are large and difficult to search and integrate
into the development process

� Non-technical: Rationale is an overhead that benefits mainly other
participants

♦ Some successful cases have illustrated the importance of tightly integrating
the capture and use of rationale within a specific process (Boehm, Dutoit &
Paech with REQuest)

