
1

Rapid Development

What is Rapid Development?

• Different meanings to different people
– RAD; e.g. JAR/JAD, CASE Tools

– Rapid Prototyping with Visual Basic

• Here Rapid Development is just a
descriptive phrase
– Contrast with “Slow Development”

– Generic term for speedy development with
short schedules, which tends to fit most
projects

2

Attaining Rapid Development

• Two basic high-level elements

– Choosing effective practices over ineffective
ones

– Choosing practices that are oriented
specifically toward achieving your schedule
objectives

• Sounds obvious?

– But many organizations routinely choose
ineffective practices

Effective Practices

Schedule
Oriented

Practices
Used on Any
Project

Speed

Risk

Visibility

3

General Strategy for Rapid
Development

• Four part strategy

1. Avoid classic mistakes

2. Apply development fundamentals

3. Manage risks to avoid catastrophic setbacks

4. Apply schedule-oriented practices

Pillars of Rapid Development

Best Possible
Schedule

Classic
Mistake
Avoidance

Development
Fundamentals

Risk
Management

Schedule-Oriented
Practices

4

Pillars of Rapid Development
Must have the first three strategies in place or the
fourth will fail

Classic
Mistake
Avoidance

Development
Fundamentals

Risk
Management

Schedule-Oriented
Practices

Dimensions of Development Speed

• Can leverage each of the four dimensions for
maximum development speed. Can focus on all
four at once.

People

Processes

Technology

Product

5

People

• People issues have more impact on software
productivity and quality than any other factor
– Many studies since the 60’s indicate productivity of
individual programmers with similar experience varies
by as much as a factor of 10 to 1

– So hire the best programmers, do whatever you can
to motivate the team
• Team t-shirts? Free soda? Windows? Bonuses?

• NASA conclusion on performance of teams
– Most effective practices leverage human potential of
developers as opposed to technology

Process

• Management and technical methodologies

• Software lifecycle, quality, development
fundamentals, user orientation, etc.

– We’ll say more about this in the second half of
the class, touched on it already with XP

6

Product

• Product Size
– Largest contributor to a development schedule – large
projects take a long time

– More features means more specs, design, testing,
integration, coordination

– Cutting the size of a program by 1/3 will typically cut
the effort required by 2/3

– Strive to develop only the most essential features

• Product Characteristics
– Goals for performance, memory use, robustness, etc.
– Choose battles wisely, do not insist on too many
priorities at once

Technology

• Tools used for development

• Language choice

– Low level vs. High level

– Objects and Reuse

– Controls and COTS software

• CASE Tools

• Project Management Tools

7

Which Dimensions?

• Different projects must accept limitations
on the dimensions to emphasize

• Real-time fuel injection system?

– Technology dimension likely fixed to
assembly, get leverage from other dimensions

• In-House Business Program?

– Seek gains in Technology and People, then
Product and Process

Alternative Strategy – “Code Like
Hell”

• Use the best possible people

• Ask for total commitment to the project

• Give near autonomy and motivation

• See that they work 60-100 hours/week until the
project is finished

• Successfully used with NT and other projects!

– But hit or miss, unrepeatable, problems with long-
term motivation, generally not very pleasant

8

Classic Mistakes

• Usually knowledge of classic mistakes is
enough to avoid them

• Using such best known practices is
necessary, but not sufficient for project
success
– Still other things can go wrong, no guarantees
here

• Mistakes categorized by People, Process,
Technology, Product

People Mistakes

1. Undermined motivation
• Hokey pep talk, going on vacation while the team works, etc.

2. Weak personnel

3. Uncontrolled problem employees
• Failure to deal with problem employee is the most common

complaint that team members have about their leaders

4. Heroics
• Encourages extreme risk taking

5. Adding people to a late project

6. Noisy, crowded offices

7. Friction between developers and customers

8. Unrealistic expectations

9

People Mistakes

9. Lack of effective project sponsorship

10. Lack of stakeholder buy-in

11. Lack of user input
• Get that user input early!

12. Politics placed over substance

13. Wishful Thinking
• Not the same as being optimistic; hoping

something will work with no reasonable basis for
thinking it will.

• Usually leads to big blowups at the end of a project

Process Mistakes

14.Overly optimistic schedules

15. Insufficient risk management
• The mistakes not common enough to be

classics are “risks” – must be managed

16.Contractor failure

17. Insufficient planning

18.Abandonment of planning under
pressure

19.Wasted time during the fuzzy front end

10

Process Mistakes

20. Shortchanged upstream activities
• Cutting out “non-essential” activities like

requirements, design

21. Inadequate design

22. Shortchanged quality assurance

23. Insufficient management controls

24. Premature or overly frequent convergence

25. Omitting necessary tasks from estimates

26. Planning to catch up later

27. Code-like-hell programming

Product Mistakes

28. Requirements gold-plating
• More requirements, complex features than needed

29. Feature creep

30. Developer gold-plating
• Developer has to throw in the latest technologies

31. Push-me, pull-me negotiation
• Manager approves schedule slip then adds on new tasks

32. Research-oriented development
• Pushing the boundaries of known CS with new algorithms?

Software research schedules are not nearly as predictable as
software development schedules

11

Technology Mistakes

33. Silver-bullet syndrome

• New technology, e.g. OOP or .NET, may not be
enough to save you

34. Overestimated savings from new tools or
methods

35. Switching tools in the middle of a project

36. Lack of automated source-code control

• On average, source code changes at a rate of 10%
a month and manual source code control can’t keep
up

Classic Mistakes

• Be aware of the classic mistakes so you
do not repeat them

– Escape from Gilligan’s Island

12

Software Development
Fundamentals

• Management

• Technical

• Quality

Management Fundamentals

• Estimation and Scheduling
– Estimate of the size of the project
– Estimate of the effort needed to build a product of that size
– Estimate of the schedule based on the effort estimate

• Planning
– Poor planning is one of most common mistakes, and source of
problems more than any other problem. Examples include the
following:
• Ill-defined contract
• Unstable problem definition
• Inexperienced management
• Political pressures
• Unrealistic deadlines

– According to Hetzel, 1993, the best projects are characterized by
strong up-front planning to define tasks and schedules

13

Management Fundamentals

Planning a software project includes
– Estimation and scheduling

– Determining how many people to have on the project
team, what technical skills are needed, when to add
people and who the people will be

– Deciding how to organize the team

– Choosing which lifecycle model to use

– Managing risks

– Making strategic decisions such as how to control the
product feature set and whether to buy or build pieces
of the product

Management Fundamentals

• Tracking
– Once you’ve planned a project, you track it to see if it is following
the plan (ie. Meeting schedule, cost and quality targets)

– Examples of management level task controls:
• Task lists

• Status meetings

• Status reports

• Milestone reviews

• Budget reports

– Examples of technical level tracking:
• Technical audits

• Technical reviews

• Quality gates (to determine if milestones are met)

14

Management Fundamentals

• Tracking

– On a typical project, project management is almost a
black-box function

• You rarely know what is going on during the project and you
just have to take whatever comes out at the end!

– On an ideal project, there is 100% visibility at all times

– Tracking is a fundamental management activity

• If you don’t track a project you can’t manage it

– Efficient tracking allows you to detect schedule
problems early, while there is a chance to fix them

Management Fundamentals

• Measurement

– Collection of data, in addition to cost and
schedule data

– E.g. measurements of how large the program
is in lines of code, number of defects

– Can then use the measures of size of the
program to see if can maintain schedule or
not

15

Quality Assurance Fundamentals

• Quality-assurance fundamentals provide critical support
for maximum development speed – if a product has too
many defects the developers spend more time fixing the
software than they spend writing it!

• Some projects try to save time by reducing the time spent
on quality-assurance practices such as design and code
reviews.

• Other projects try to make up for lost time by compressing
testing schedules – These are some of the worst decisions
a person can make to maximize development speed

• This is because higher quality (i.e. lower defect rates) and
reduced development time go hand in hand
– generally as defect rate is lower in a project, the development time
will be less (up to some point, since if you aim for an extremely low
defect rate may slow things down) – note some projects, life-critical
must have low rates

Development Time vs. Defect Rate

Development
Time

Percentage of Defects Removed
~95% 100%

Most are somewhere
around here

Fastest schedule

16

Quality

• In general, many organizations develop software with
defect rates that give them longer schedules than
necessary

• Study of 4000 projects has shown that poor quality is
one of the main reasons for schedule overruns and is
implicated in nearly half of all cancelled projects

• There is a cut-off for acceptability in many applications –
good to develop systems that are 95% defect free by
time of release (also related to speed, these systems get
done fastest)

• If there is more than 5 % of your defects after your first
release, there will be major problems!

Some Statistics

• Each hour spent on quality-assurance activities (e.g.
design reviews) saves from 3 to 10 hours in downstream
costs

• A requirements defect that is left undetected until
construction or maintenance will cost 50 to 200 times as
much to fix as it would have cost to fix at requirements
time

• A defect that isn’t detected upstream (during
requirements or design) will cost from 10 to 100 times as
much to fix downstream (during testing) as it would have
cost to fix at its origin.

• The further from its origin that a defect is detected, the
more it will cost to fix

17

Error Prone Modules

• A module that is responsible for a disproportionate
number of defects

• On IBM’s IMS Project they found that 57 percent of
errors were clumped into 7% of the modules

• Boehm: 20% of the modules in a program are often
responsible for 80% of the errors

• Error prone modules cost more to develop
– If a normal module costs about $500 to $1000 per function point
to develop, an error-prone module might cost $2,000 to $4,000

• Identification and redesign of error-prone modules may
need to be a priority if development speed is important
– Guideline: 10 defects per 1000 lines of code, think about
redesign

Testing

• The most common QA practice is execution testing
– Execute the program and see what it does
– Unit testing – where developer checks his or her own code
– System testing – an independent tester checks to see whether
the system operates as expected

• Unit testing can find anywhere from 10-50% of the
defects in a program

• System testing can find from 20-60% of a program’s
defects

• Together their cumulative defect-detection rate is often
less than 60%

• Rest of errors are found by some other error-detecting
method (e.g. reviews, or by end users)

18

Testing

• Testing is considered by some managers as the
black sheep of QA practices as far as
development speed is concerned
– But without it the product may never get released
properly

– Moreover it can be the messenger that delivers bad
news if the project is not implemented well

• Plan ahead for bad news – set up testing so that
if there is bad news to deliver, testing can deliver
it as early as possible

Technical Reviews

• Reviews used to detect defects in requirements, design,
code, test cases, or other project artifacts

• Vary in level of formality and effectiveness
• Play a more critical role in development speed than
testing does

• Walkthroughs
– Any meeting at which two or more developers review technical
work with the purpose of improving its quality

– Useful for rapid development because you can detect errors well
before testing

– Can be used to detect a requirement at specification time, before
any design or code

– Can find between 30 and 70 percent of errors in a program

19

Technical Reviews

• Code Reading
– A more formal review process than a walkthrough
– The author of the code hands out a sources listing to two or more
reviewers

– The reviewers read the code and report any errors to the author

• Inspections
– A formal technical review
– Developers receive special training in inspections and play specific roles
during the inspection

– The “reviewers” examine the product before the meeting
– The “author” summarizes the product during the meeting
– The “scribe” records everything
– Can find from 60-90 % of the errors in a program
– One study- one hour spent on inspections avoided an average of 33
hours of maintenance, and inspections were up to 20 times more
efficient than testing

Technical Reviews

• Technical reviews are an important supplement
to testing
– They find different errors than testing
– They find defects earlier
– Can be more cost effective

• Testing detects only the symptom of the defect,
the developer still has to find the cause by
debugging

• Reviews lead to a more preventative approach
• Also provide a forum for developers to share
their knowledge of best practices

20

Odds of Completing on Time

• Too many variables to set a schedule with 100%
accuracy

• Probability distribution something like the curve below

Probability of
Completion on
The scheduled
date

Schedule completion date

Odds of Completion on Time

Probability of
Completion on
The scheduled
date

Schedule completion date

50-50 “break-even” schedule

Efficient zone

Slow development

Rapid Development

Impossible
Development

21

Odds of Completion on Time

Probability of
Completion on
The scheduled
date

Schedule completion date

Most projects
Scheduled here

Half of the projects
are completed here

Overcome the perception of slow development
• Eliminate wishful thinking
• Lengthen gap between planned and actual completion dates
• Keep customers informed of progress

Where the Time Goes
Activity Small Project

(2,500 lines
of code)

Large Project
(500,000
lines of code)

Architecture/De
sign

10% 30%

Detailed Design 20% 20%

Code/Debug 25% 10%

Unit Test 20% 5%

Integration 15% 20%

System Test 10% 15%

22

Development/Speed Trade-Offs

• Balance between Schedule, Cost, Product
• Customers “hold” one or two corners, developer
can tell them what the other must be

Schedule

Cost Product

