
1

Software Development Best
Practices

Part I

Best Practices

• Describe best practices in rapid development

• Result of 20 years or more experience from
many developers

• Common sense to less obvious

• Excluded

– Fundamental development practices

– Best philosophy but not best practice

– Best practice, maybe, but not for development speed

– Insufficient evidence

2

Ratings

• Efficacy
– Potential reduction from nominal schedule

• None = 0%
• Fair = 0-10%
• Good = 10-20%
• Very Good = 20-30%
• Excellent = 30%+

– Improvement in progress visibility
• None = 0%
• Fair = 0-25%
• Good = 25-50%
• Very Good = 50-75%
• Excellent = 75%+

Ratings

• Efficacy

– Effect on schedule risk

• Decreased

• No effect

• Increased

– Chance of first-time and long-term success

• Poor = 0-20%

• Fair = 20-40%

• Good = 40-60%

• Very Good = 60-80%

• Excellent = 80%+

3

Change Board

• Approach to controlling changes in the
product

– Brings together representatives from all parties

• Development, QA, Doc, Customer support,
Marketing, etc.

– Gives representatives authority for accepting
or rejecting proposed changes

– Raises visibility of feature creep, reduces
number of uncontrolled changes, keeps all
parties involved

Change Board

• Efficacy

– Potential reduction from nominal schedule: Fair

– Improvement in progress visibility: Fair

– Effect on schedule risk: Decreased Risk

– Chance of first-time success: Very Good

– Chance of long-term success: Excellent

• Major Risks

– Approving too few or too many changes

4

Daily Build and Smoke Test

• A process where the product is completely
built every day and put through some basic
tests to see if it “smokes” when turned on

• On a typical project there are many
developers that must integrate their code
– “Build” means the product is compiled ,linked,
and combined into an executable at the end of
each day

– Test is a simple one that exercises basic
functionality

Time Savings of Daily Build

• Minimized integration risk
– Integrating code from team members one of the greatest risks
– Daily build keeps integration errors small and manageable

• Reduces risk of low quality
– Minimal smoke testing every day helps keep quality problems
from taking over

• Easier defect diagnosis
– Easier to pinpoint why something is broken on any given day;
changes since last day; incremental development

• Supports progress monitoring
– Obvious what features are present and missing

• Improves morale
– Boost in morale to see the product work and progress made
– Also applies to customer relations

5

Using the Daily Build and Smoke
Test

• Build daily
– Or at regular intervals
– “Heartbeat” of the project; keeps developers
synchronized

– Use automated build tools; e.g. make

• Check for broken builds
– Fixing broken builds is top priority
– Failure to pass smoke test is a broken build

• Smoke test daily
– Exercise entire system end to end but not exhaustive
– Grows from “hello world” to complex system that may
even take hours to run

Using the Daily Build and Smoke
Test

• Developers should smoke test before adding to
the build

• Use version control tools to know what might
have broken the build and be able to revert

• Create a penalty for breaking the build

– $$?

– Beeper?

– Sucker?

– Responsibility for build until fixed?

6

Risks of Daily Build

• Tendency toward premature release

– Developers might focus on the build and skip
materials needed for the final product like
documentation

– Developers might put in hacks to fix the build

Daily Build Summary

• Efficacy
– Potential reduction from nominal schedule: Good
– Improvement in progress visibility: Good
– Effect on schedule risk: Decreased Risk
– Chance of first-time success: Very Good
– Chance of long-term success: Excellent

• Major Risks
– Pressure to release interim versions of a program too
frequently

• Major Interactions
– Especially effective with miniature milestones

7

Designing for Change

• Broad practice that encompasses many
practices to plan for change. Must be
employed early in the lifecycle.

– Identifying likely changes

– Develop a change plan

– Hide design decisions to avoid rippling
through the project

Using Designing for Change

• Identify Areas Likely to Change
– List design decisions likely to change
– Great designers able to anticipate more kinds of
possible change than average designers

– Frequent sources:
• Hardware dependencies
• File formats
• Nonstandard language features
• Difficult design areas
• Specific data structures
• Business rules
• Requirements barely excluded
• Features for next version

8

Using Designing for Change

• Use Information Hiding

– Plenty has been said about this already

– Hide design decisions inside modules

– One of the few theoretical techniques proven
useful in practice

Using Designing for Change

• Develop a Change Plan

– Examples:

• Use late-binding strategies for types or data
structures that may change (e.g. allocate
dynamically based on sizes)

• Use named constants instead of hard-coded
literals

• Data-driven techniques where data dictates how
the program will operate instead of hard-coding

9

Designing for Change Summary

• Efficacy

– Potential reduction from nominal schedule: Fair

– Improvement in progress visibility: None

– Effect on schedule risk: Decreased Risk

– Chance of first-time success: Good

– Chance of long-term success: Excellent

• Major Risks

– Over-reliance on programming languages to solve
design problems rather than on change-oriented
design practices

Evolutionary Delivery

• Lifecycle model using the ideas of
evolutionary prototyping. Delivers
selected portions of the software earlier
than would otherwise be possible, but
does not necessarily deliver the final
product any faster.

• Can lead to improved quality, even
distribution of development and testing

10

Evolutionary Delivery Approach

• Going grocery shopping

– Waterfall model: complete list for next week

– Prototyping: no list, get what looks good

– Evolutionary delivery: in between, start with a
list them improvise as you go

Req’s Design Develop
Feature(s)

Deliver

Feedback

Incorporate

Deliver Final

Evolutionary Delivery Benefits

• Reduces risk of delivering a product the
customer doesn’t want

• Makes progress visible by early and often
delivery

• Reduces risk of integration by integrating
early and often

• Improves morale as the project evolves in
power

11

Evolutionary Delivery Summary

• Efficacy

– Potential reduction from nominal schedule: Good

– Improvement in progress visibility: Excellent

– Effect on schedule risk: Decreased Risk

– Chance of first-time success: Very Good

– Chance of long-term success: Excellent

• Major Risks

– Feature creep, diminished project control, unrealistic
schedule, inefficient use of development time

Goal Setting

• Human motivation is the single, strongest
contributor to productivity

– A manager simply tells developers what is
expected

– Developers will generally work hard to
achieve a goal of “shortest schedule”

– Primary obstacle to success is an
unwillingness to define a small, clear set of
goals and commit to them for an entire project

12

Goal Setting: Goal of Shortest
Schedule

• Efficacy

– Potential reduction from nominal schedule: Very
Good

– Improvement in progress visibility: None

– Effect on schedule risk: Increased Risk

– Chance of first-time success: Good

– Chance of long-term success: Very Good

• Major Risks

– Significant loss of motivation if goals are changed

Goal Setting: Goal of Least Risk

• Efficacy

– Potential reduction from nominal schedule: None

– Improvement in progress visibility: Good

– Effect on schedule risk: Decreased Risk

– Chance of first-time success: Good

– Chance of long-term success: Very Good

• Major Risks

– Significant loss of motivation if goals are changed

13

Goal Setting: Goal of Maximum
Visibility

• Efficacy

– Potential reduction from nominal schedule: None

– Improvement in progress visibility: Excellent

– Effect on schedule risk: Decreased Risk

– Chance of first-time success: Good

– Chance of long-term success: Very Good

• Major Risks

– Significant loss of motivation if goals are changed

Inspections

• Formal technical review
– Participants inspect review materials before
the review meeting to stimulate discovery of
defects

– Participants have roles of moderator, scribe,
participant

– Can find errors before going to testing,
studies have found it more effective in total
defects found and time spent per defect

– Good tool for tracking progress

14

Inspections Summary

• Efficacy
– Potential reduction from nominal schedule:
Very Good

– Improvement in progress visibility: Fair

– Effect on schedule risk: Decreased Risk

– Chance of first-time success: Good

– Chance of long-term success: Excellent

• Major Risks
– None

Lifecycle Model Selection

• Product development styles vary
tremendously among different kinds of
projects

• Choice of the wrong lifecycle model can
result in missing tasks and inappropriate
task ordering, which undercuts planning
and efficiency

• Choose the appropriate lifecycle

15

Lifecycle Selection Summary

• Efficacy

– Potential reduction from nominal schedule: Fair

– Improvement in progress visibility: Fair

– Effect on schedule risk: Decreased Risk

– Chance of first-time success: Very Good

– Chance of long-term success: Excellent

• Major Risks

– Specific lifecycle models may contain certain risks

Measurement

• Quantitative measurement of project progress

– Dozens of techniques, we will discuss in more detail
later

• Size, lines of code, defect rate, hours spent debugging, hours
spent designing, developer or customer satisfaction surveys

– Provides complementary information to adjust
estimates, schedules, track progress

• Can have short-term motivational benefits and
long-term cost, quality, and schedule benefits

16

Measurement Benefits

• Provides status visibility
– Helps you and others know what your status is

• Focuses people’s activities
– Feedback on measurement can motivate and get
people to respond; e.g. reduce defect rate

– What gets measured gets optimized

• Improves morale
– Properly implemented, measurement can improve
morale by bringing attention to problem areas

• Help set realistic expectations
– Provides historic baseline over long-term
– Sets stage for process improvement

What to Measure

• Cost and resource data

– Effort by activity, phase,
personnel type

– Computer resources

– Time

• Change and defect data

– Defects by classification

– Problem report status

– Defect detection method

– Effort to detect and correct
defects

• Process data

– Process definition, process
conformance

– Estimated time to
completion

– Milestone progress

– Requirement changes

• Product data

– Size, functions

– Development milestones

– Total effort

17

Measurement Risks

• Over-reliance on statistics, data accuracy

• Over-optimization of a single factor

– If measure LOC, developers may become more
verbose but decrease quality

– If only measure defects, development might drop in
favor of testing/fixing

• Measurements misused for employee
evaluations

– Lots of defects does not necessarily mean a bad
developer

Measurement Summary

• Efficacy
– Potential reduction from nominal schedule: Very
Good

– Improvement in progress visibility: Good

– Effect on schedule risk: Decreased Risk

– Chance of first-time success: Good

– Chance of long-term success: Excellent

• Major Risks
– Over-optimization of single-factor measurements

– Misuse of measurements for employee evaluations

– Misleading information from LOC measurements

18

Miniature Milestones

• Fine-grain approach to project tracking
and control

– Provides good visibility into a project’s status

– Keys to success include

• Overcoming resistance of people whose work will
be managed with the practice, may feel like
micromanagement

• Staying true to the “miniature” nature

Miniature Milestones

• Driving to the lower 48
– Major milestones: cities along the way

• Might be hundreds of miles apart

– Mini milestones: stops and landmarks much closer,
perhaps 25 miles apart
• Move to mini milestone, then make a reading to the next mini
milestone, etc.

• Define set of targets
– Targets should be met on a daily or near daily basis

– If milestones are not met, you know the schedule isn’t
realistic and will find out early on

19

Miniature Milestone Benefits

• Improves status visibility
– Avoid letting developers “go dark”

• “How’s everything going?” “OK”

• “How’s everything going?” “Late by 6 months.”

• Can help keep people on track
– Easy to lose sight of the big picture without short-term
milestones

• Improved motivation
– Achievement happens regularly

• Reduced schedule risk
– Breaks large, poorly defined schedule into smaller more well-
defined ones

– Requires more planning work on behalf of manager

Using Mini Milestones

• Initiate early or in response to a crisis
– If set up at other times, manager runs the risk of appearing
draconian and over-controlling

• Have developers create their own mini milestones
– Allows developers to remain in control and not feel micro-
managed

• Keep milestones miniature
– Achievable in 1-2 days

– Important to be able to catch up quickly of a milestone is missed

– Reduces number of places for unforeseen problems to hide

• Make milestones binary
– Done or not done

20

Using Mini Milestones

• Make the set of milestones exhaustive

– Must cover every task needed to release the product

– Do not allow developers to keep list of “cleanup” tasks
in their heads, easily lost

• Use for short-term but not long-term planning

• Regularly assess progress and recalibrate or
replan

– Since mini milestones are short term they need re-
alignment often, can’t plan ahead too far

Mini Milestone Side Effects

• Requires detailed, active management
• Demands additional time and effort from both
management and developers
– Tradeoff with increased visibility and control of the
planning process

• Successful use prevents a project leader from
losing touch with the project
– In regular contact with each person whenever a
milestone is to be done

– Lots of incidental communication that helps with risk
management, motivation, personnel issues, and other
management activities

21

Mini Milestones Summary

• Efficacy
– Potential reduction from nominal schedule: Fair
– Improvement in progress visibility: Very Good
– Effect on schedule risk: Decreased Risk
– Chance of first-time success: Good
– Chance of long-term success: Excellent

• Major Risks
– Developer opposition to micro-management

• Major Interactions
– Especially well-suited to project recovery
– Works well with daily build and smoke test practice

