9/18/2012

Unit Testing

Understanding Why We Test First

* This seems backwards, if you test first there is
nothing to test

» Testing first requires you to think differently

— Some claim the most important piece of the agile
development process

— Can be difficult to embrace
— How can this even be done with nothing to test?

Tests before Code

Cooking recipes have been compared to software
programs/algorithms

— How do you know when the turkey is done?

— Without a test you'll just be guessing at when you’re done (and
risk salmonella)

Building inspector does the same thing

— Set of criteria for the building to pass, even if the building
doesn’t exist yet

Programming
— Write the test case first

— Forces you into a simple, bottom-up design as you test
individual cases first and then later the integration of those
cases

Writing a Test Case

First, decide on subtask to accomplish

— Should be small and require a simple test case (or
cases)

Simple example

— Need to write code to find the largest of three
integers

— Write test case first to indicate success or failure
of the code you will write

9/18/2012

Simple Test Case

public void testMaxOfThreelInts ()

{
if (maxOfThreeInts(1l,7,3) == 7)

System.out.println ("Passed MaxOfThreeInts Test");

System.out.println("Failed maxOfThreeInts Test");

Simple Test Case, Expanded

If desired, we can add more tests for the code, to test more conditions.

public void testMaxOfThreelInts ()
{
if (maxOfThreelInts(1,7,3) == 7)
{
if (maxOfThreelnts(6,1,4) == 6)
{
System.out.println ("Passed MaxOfThreeInts Test");
}
else

{
System.out.println("Failed maxOfThreeInts Test");

else

System.out.println("Failed maxOfThreeInts Test");

Don’t add too many or the test case can become too complex. “Smoke test”.

9/18/2012

9/18/2012

Better Version

* Use assert which throws an exception if the
expression in parenthesis is not true

— Appropriate for internal invariants

— NOT appropriate to take the place of argument checking,
work your app would do for correct operation

— For Java, must run with —ea flag

public void testMaxOfThreelInts ()

{
assert (maxOfThreelInts(1,7,3) == 7) : "Failed for 1,7,3";

assert (maxOfThreelInts(7,1,3) == 7) : "Failed for 7,1,3";

Writing Code Being Tested

* Next we would fill in the code to be tested. If
desired we could start with a stub to allow the
test case to run:

public int maxOfThreelInts (int numl, int num2, int num3)

{

return numl;

}
 Then we fill in the code and test it:

public int maxOfThreelInts (int numl, int num2, int num3)

{
int max = numl;
if ((num2 >= numl)) && (num2 >= num3)) max = num2;
if ((num3 >= numl)) && (num3 >= num2)) max = num3;

return max;

9/18/2012

Slightly More Complex Example

* Test to see if entered password matches that
of the stored password for a graphical
password scheme

Graphical Password Test

Already defined:

class Point
{

private int x,y;

public Point(int x, int y) { ... }

public double distance (Point otherPoint) { ... }
}

Header:

private boolean passwordMatch (ArrayList<Point> actual,
ArrayList<Point> entered)

What tests to write?

9/18/2012

Graphical Password Test

private boolean passwordMatch (ArrayList<Point> actual,
ArrayList<Point> entered)

Next we write the code

private boolean passwordMatch (ArrayList<Point> actual,
ArrayList<Point> entered) {
if (actual.size() != entered.size()) {
return false;
}
for (int i=0; i<actual.size(); i++) {
Point pl = actual.get(i);
Point p2 = entered.get (i);
double d = pl.distance(p2);
if (d > CIRCLEDIAMETER/2) {
return false;

}

return true;

Tests can help drive the creation of the code;
e.g. if wrote test for different sized ArrayLists

9/18/2012

Exhaustive Testing

* This would be if we wrote test cases to handle all input
scenarios
— Not feasible in most cases

— Too many input combinations, tests become too
complicated and difficult, too time consuming

* Practical alternative is representative testing
— Pick cases that are representative of a segment of the code

— Pick cases on the boundary conditions and outside
boundary conditions (i.e. should cause errors)

— WEe’'ll say more about choosing test conditions for good
coverage later

Testing First is Hard!

* You may “reinterpret” the process by writing the
code first and then immediately afterwards write
the test

— Not OK

* If you find code without a test, stop, write the
test, and continue

— Work harder to think of testing as the first step when
tackling a subtask

— The act of writing the test case will drive the design
and force you to focus on the immediate subtask,
eliminate ancillary issues, and give a different
perspective on writing the code

Developing a Test Suite

The collection of all tests is called the Test Suite

Immediately provides a system status report
— Use as a roadmap to locate problems

— If testing is not done first, it is easy to have gaps in the
system

Test suite grows naturally and incrementally using
the test-first methodology

The test suite can grow to be quite large
— Must be automated

Automated Testing

Tests must be automated so they can be re-run in case
new code breaks old code

Must be

— Fully automated (click a button to run them all)

— Interpret Results (visual feedback)

— Descriptive Error Messages (so you know where it failed)
— Fast

Testing frameworks like JUnit (Java), NUnit (.NET), or
XUnit (C++) can help

Will walk through JUnit briefly in class
Can google for JUnit/NUnit tutorials online

9/18/2012

9/18/2012

Rationale Behind Testing First

* Forces programmers to think about code
before writing it
— By extension, guides design of the overall system

If you wrote the code first and it seems to
work, would you bother writing a test for it?

* Gives immediate, useful feedback

Test suite becomes an invaluable, custom tool
to gauge the health and progress of the
system

Testing First Forces Simplicity

* Writing test phase
— State test cases as simply as possible
— Find enough representative test cases to cover the
code
* Writing code
— Goal becomes making the test pass

— Perform least amount of work to reasonably make
the test pass

* Might be ugly code at first, but if it works it can be
refactored later

Simplicity drives the Design

Simple bottom-up development leads to a
good high-level design

Doesn’t dismiss system design, but promotes
designing and building the system in tandem

Argument: cumulative effect of making lots of
good, small local decisions leads to a good
overall, global design

— Emergent behavior; we get an emergent design
that can be robust

Testing First Clarifies the Task

A test is a small, self-contained action

It becomes an example to help understand
what the code needs to do

Also acts as a checkpoint; if you don’t
understand the problem well enough to write
a test case, you aren’t ready to write the code

Might grapple on how to write the test, but
the time also helps you write the code

9/18/2012

10

Testing First Frees You from On-the-fly
Editing

* On-the-fly editing: You're coding along then see a
different way of implementing the code.

— Scrap approach or keep it?
— Hit on productivity either way
* Testing first eliminates distraction
— Aim for simplest, correct solution
— Later, the code can be re-examined

— No immediate worry about readability, efficiency,
maintainability, speed, size, cleverness, etc. The focus
is on making simple code to pass the test.

» After code is written it is fair game for change

Test Suites and Refactoring

* A major refactoring could involve changing
code in lots of classes and methods

— Potential for everything to horribly break

» Test Suite provides a safety net and provide
confidence in large, complex changes

e Can experimentally probe the structure and
dependencies by making tentative changes

9/18/2012

11

9/18/2012

Testing First Provides Documentation

* Test cases provide useful documentation

— Encapsulates the developer’s intent while writing
the code

* Future maintainers get chronology of the
development and useful diagnostic tool to
guide future changes

Fixing Broken Test Cases

* You modify code or introduce a bug and as a
result, tests don’t run correctly. What now?

* Goal is to make the tests pass

— Might require refactoring the test cases
themselves to match new code signatures

— Might require searching through the code to find
out why the test case fails

12

9/18/2012

Adding Missing Tests

* If you ever find a bug that the test suite
doesn’t catch, then you must write a test that
exposes the deficiency before fixing the code
— Causes the tests to reflect the error condition

— Prevents missing the problem in the future if it
creeps back in somehow

Tests Suites and Sanity

» Test suites psychologically help the team’s
frame of mind

— Successful passing of tests strokes your inner
programmer

— Stronger boost when you see a new/better/more
efficient way to write your code, and can see that
all of the tests still pass

13

JUnit and NetBeans Demo

* Integrated into NetBeans

— Slightly different process if not using an IDE; have to
import Junit, make a test class, extend TestCase

— Also integrated with Eclipse and other IDE’s

1. Create project

2. Create class for code that will be tested

— Can make a test case with no corresponding class,
but | think it’s a bit easier to make the class first

3. Select the class in the project view and under
T)ools select Create JUnit Tests

Window Help

Add to Favorites

Create JUnit Tests

JUnit

* Creating a JUnit Test

* Class has “Test” at end to
distinguish it as a test

* Can leave default code
generation

* |If there are methods in the
class, JUnit will create tests
for each one

— Can be useful to write an
empty method to be tested
first, with just the header, to
make it easier to generate
the test

Ctrl+Shift+U

) Create Tests

(Class to Test: Hellaworld

Location: Test Packages

Code Generation
Method Access Levels
V| Public
V| Protected

V] Packags Private

Class Name: HelloWorldTest|

Generated Cods

V| Test Initializer

/| Test Finalizer

V| Defaulk Method Bodies
Generated Comments

| Javadoc Comments

V| Source Cods Hints

oK H Cancel H Help

9/18/2012

14

9/18/2012

Test Class

public static void setUpClass() throws Exception { /‘ Run once for the test class

} /
@AfterClass

public static void tearDownClass () throws Exception {
}

@Before
public void setUp() { % Run for every test ‘
} /

@After
public void tearDown () {
}

/**

* Test of main method, of class HelloWorld.
*/

@Test

public void testMain() { Test; Add multiple test methods with @Test
System.out.println("main");
String[] args = null;

HelloWorld.main (args) ;

// TODO review the generated test code and remove the
default call to fail.

fail ("The test case is a prototype.");

}

Running Tests

* Select “Test <project>" under the “R)un”
menu [Run] Profile Versioning Teols Window Help

[> RunMzin Project Fé
{H Debug Main Project Cirl +F5
Test "Hello” Alt+F6

* Orright-click the test class and select “Run”

=-[fh Test Packages
B EE‘ <default package>

R E KHelloworldTest. java

& Libraries Open

B TestLibraries
Cut Crl+X
Copy Ctrl+C
Paste Ctrl+V
Compile File Fg
Run File Shift+F6

15

Determining Success or Failure

The Assert class has the following methods:

assertEquals: Overloaded to test if an actual value matches the expected
one. First parameter can be a String with a message.

* assertEquals(“Number mismatch”, 3, 3); // Passesif3==3
assertFalse: Use this if you know the function will always return false
(fails if it receives true)
assertNotNull: If your method return null in the event of failure use this
to check to see if it succeeds

assertNotSame: If your method is supposed to return an element from a
list you can use this to check if the element returned is the one from the
actual list

assertNull: If your method return null in the event of failure use this to
check to see if it fails

fail: Will fail the test, use this in conjunction with conditionals

failNotEquals: Essentially the same as assertEquals but will fail the test if
they arent equal instead of causing an error

failNotSame: Essentially the same as assertNotSame except instead of
causing an error it will cause a failure

Running Tests

 |IDE displays results of each test; click on a test

to get more details and jump straight to the
failed case

: Qutput - Hello (test)
T 1 test passed, 2 tests faled.
Cl-ffy Class2Test passed
{ L@ bestStuFf passed (0.003s
By HelloWorldTest FAILED
= @ testMain FAILED (0,008 s)
The test case is a prototype.
junit. Framework. AssertionFailedError
at HelloWorldTest. testMain(HelloWorldTest java:47)
= @ testMinOFThreelnts FAILED (0,002 s)
Failed 1 expected: <3 but was: <7
junit. Framework. AssertionF ailedError
at HelloWorldTest. bestMinOF ThreeInts(HelloWorldTest . java:54)

9/18/2012

16

9/18/2012

Happy Testing!

* JUnit makes it easy to create, maintain, run
tests

» Tests are kept separate from the actual project
so they don’t interfere with the “real” code

* If you don’t want to use a test framework you
could make your own with a little extra work

— Separate class with a main() that invokes all the
methods for the tests, outputs or asserts errors,
etc.

17

