
9/18/2012

1

Unit Testing

Test First, Code Second

Understanding Why We Test First

• This seems backwards, if you test first there is
nothing to test

• Testing first requires you to think differently

– Some claim the most important piece of the agile
development process

– Can be difficult to embrace

– How can this even be done with nothing to test?

9/18/2012

2

Tests before Code

• Cooking recipes have been compared to software
programs/algorithms
– How do you know when the turkey is done?
– Without a test you’ll just be guessing at when you’re done (and

risk salmonella)

• Building inspector does the same thing
– Set of criteria for the building to pass, even if the building

doesn’t exist yet

• Programming
– Write the test case first
– Forces you into a simple, bottom-up design as you test

individual cases first and then later the integration of those
cases

Writing a Test Case

• First, decide on subtask to accomplish

– Should be small and require a simple test case (or
cases)

• Simple example

– Need to write code to find the largest of three
integers

– Write test case first to indicate success or failure
of the code you will write

9/18/2012

3

Simple Test Case

public void testMaxOfThreeInts()

{

 if (maxOfThreeInts(1,7,3) == 7)

 {

 System.out.println("Passed MaxOfThreeInts Test");

 }

 else

 {

 System.out.println("Failed maxOfThreeInts Test");

 }

}

Simple Test Case, Expanded

public void testMaxOfThreeInts()

{

 if (maxOfThreeInts(1,7,3) == 7)

 {

 if (maxOfThreeInts(6,1,4) == 6)

 {

 System.out.println("Passed MaxOfThreeInts Test");

 }

 else

 {

 System.out.println("Failed maxOfThreeInts Test");

 }

 }

 else

 {

 System.out.println("Failed maxOfThreeInts Test");

 }

}

If desired, we can add more tests for the code, to test more conditions.

Don’t add too many or the test case can become too complex. “Smoke test”.

9/18/2012

4

Better Version

• Use assert which throws an exception if the
expression in parenthesis is not true

– Appropriate for internal invariants

– NOT appropriate to take the place of argument checking,
work your app would do for correct operation

– For Java, must run with –ea flag

public void testMaxOfThreeInts()

{

 assert(maxOfThreeInts(1,7,3) == 7) : "Failed for 1,7,3";

 assert(maxOfThreeInts(7,1,3) == 7) : "Failed for 7,1,3";

}

Writing Code Being Tested

• Next we would fill in the code to be tested. If
desired we could start with a stub to allow the
test case to run:

• Then we fill in the code and test it:

public int maxOfThreeInts(int num1, int num2, int num3)

{

 return num1;

}

public int maxOfThreeInts(int num1, int num2, int num3)

{

 int max = num1;

 if ((num2 >= num1)) && (num2 >= num3)) max = num2;

 if ((num3 >= num1)) && (num3 >= num2)) max = num3;

 return max;

}

9/18/2012

5

Slightly More Complex Example

• Test to see if entered password matches that
of the stored password for a graphical
password scheme

Graphical Password Test
Already defined:

class Point

{

 private int x,y;

 public Point(int x, int y) { ... }

 public double distance(Point otherPoint) { ... }

}

Header:

private boolean passwordMatch(ArrayList<Point> actual,

 ArrayList<Point> entered)

What tests to write?

9/18/2012

6

Graphical Password Test
private boolean passwordMatch(ArrayList<Point> actual,

 ArrayList<Point> entered)

Next we write the code
 private boolean passwordMatch(ArrayList<Point> actual,

 ArrayList<Point> entered) {

 if (actual.size() != entered.size()) {

 return false;

 }

 for (int i=0; i<actual.size(); i++) {

 Point p1 = actual.get(i);

 Point p2 = entered.get(i);

 double d = p1.distance(p2);

 if (d > CIRCLEDIAMETER/2) {

 return false;

 }

 }

 return true;

 }

Tests can help drive the creation of the code;
e.g. if wrote test for different sized ArrayLists

9/18/2012

7

Exhaustive Testing

• This would be if we wrote test cases to handle all input
scenarios
– Not feasible in most cases

– Too many input combinations, tests become too
complicated and difficult, too time consuming

• Practical alternative is representative testing
– Pick cases that are representative of a segment of the code

– Pick cases on the boundary conditions and outside
boundary conditions (i.e. should cause errors)

– We’ll say more about choosing test conditions for good
coverage later

Testing First is Hard!

• You may “reinterpret” the process by writing the
code first and then immediately afterwards write
the test
– Not OK

• If you find code without a test, stop, write the
test, and continue
– Work harder to think of testing as the first step when

tackling a subtask
– The act of writing the test case will drive the design

and force you to focus on the immediate subtask,
eliminate ancillary issues, and give a different
perspective on writing the code

9/18/2012

8

Developing a Test Suite

• The collection of all tests is called the Test Suite

• Immediately provides a system status report

– Use as a roadmap to locate problems

– If testing is not done first, it is easy to have gaps in the
system

• Test suite grows naturally and incrementally using
the test-first methodology

• The test suite can grow to be quite large

– Must be automated

Automated Testing

• Tests must be automated so they can be re-run in case
new code breaks old code

• Must be
– Fully automated (click a button to run them all)
– Interpret Results (visual feedback)
– Descriptive Error Messages (so you know where it failed)
– Fast

• Testing frameworks like JUnit (Java), NUnit (.NET), or
XUnit (C++) can help

• Will walk through JUnit briefly in class
• Can google for JUnit/NUnit tutorials online

9/18/2012

9

Rationale Behind Testing First

• Forces programmers to think about code
before writing it
– By extension, guides design of the overall system

• If you wrote the code first and it seems to
work, would you bother writing a test for it?

• Gives immediate, useful feedback

• Test suite becomes an invaluable, custom tool
to gauge the health and progress of the
system

Testing First Forces Simplicity

• Writing test phase
– State test cases as simply as possible

– Find enough representative test cases to cover the
code

• Writing code
– Goal becomes making the test pass

– Perform least amount of work to reasonably make
the test pass
• Might be ugly code at first, but if it works it can be

refactored later

9/18/2012

10

Simplicity drives the Design

• Simple bottom-up development leads to a
good high-level design

• Doesn’t dismiss system design, but promotes
designing and building the system in tandem

• Argument: cumulative effect of making lots of
good, small local decisions leads to a good
overall, global design
– Emergent behavior; we get an emergent design

that can be robust

Testing First Clarifies the Task

• A test is a small, self-contained action

• It becomes an example to help understand
what the code needs to do

• Also acts as a checkpoint; if you don’t
understand the problem well enough to write
a test case, you aren’t ready to write the code

• Might grapple on how to write the test, but
the time also helps you write the code

9/18/2012

11

Testing First Frees You from On-the-fly
Editing

• On-the-fly editing: You’re coding along then see a
different way of implementing the code.
– Scrap approach or keep it?
– Hit on productivity either way

• Testing first eliminates distraction
– Aim for simplest, correct solution
– Later, the code can be re-examined
– No immediate worry about readability, efficiency,

maintainability, speed, size, cleverness, etc. The focus
is on making simple code to pass the test.

• After code is written it is fair game for change

Test Suites and Refactoring

• A major refactoring could involve changing
code in lots of classes and methods

– Potential for everything to horribly break

• Test Suite provides a safety net and provide
confidence in large, complex changes

• Can experimentally probe the structure and
dependencies by making tentative changes

9/18/2012

12

Testing First Provides Documentation

• Test cases provide useful documentation

– Encapsulates the developer’s intent while writing
the code

• Future maintainers get chronology of the
development and useful diagnostic tool to
guide future changes

Fixing Broken Test Cases

• You modify code or introduce a bug and as a
result, tests don’t run correctly. What now?

• Goal is to make the tests pass

– Might require refactoring the test cases
themselves to match new code signatures

– Might require searching through the code to find
out why the test case fails

9/18/2012

13

Adding Missing Tests

• If you ever find a bug that the test suite
doesn’t catch, then you must write a test that
exposes the deficiency before fixing the code

– Causes the tests to reflect the error condition

– Prevents missing the problem in the future if it
creeps back in somehow

Tests Suites and Sanity

• Test suites psychologically help the team’s
frame of mind

– Successful passing of tests strokes your inner
programmer

– Stronger boost when you see a new/better/more
efficient way to write your code, and can see that
all of the tests still pass

9/18/2012

14

JUnit and NetBeans Demo
• Integrated into NetBeans

– Slightly different process if not using an IDE; have to
import Junit, make a test class, extend TestCase

– Also integrated with Eclipse and other IDE’s

1. Create project

2. Create class for code that will be tested
– Can make a test case with no corresponding class,

but I think it’s a bit easier to make the class first

3. Select the class in the project view and under
T)ools select Create JUnit Tests

JUnit

• Creating a JUnit Test
• Class has “Test” at end to

distinguish it as a test
• Can leave default code

generation
• If there are methods in the

class, JUnit will create tests
for each one
– Can be useful to write an

empty method to be tested
first, with just the header, to
make it easier to generate
the test

9/18/2012

15

Test Class
 @BeforeClass

 public static void setUpClass() throws Exception {

 }

 @AfterClass

 public static void tearDownClass() throws Exception {

 }

 @Before

 public void setUp() {

 }

 @After

 public void tearDown() {

 }

 /**

 * Test of main method, of class HelloWorld.

 */

 @Test

 public void testMain() {

 System.out.println("main");

 String[] args = null;

 HelloWorld.main(args);

 // TODO review the generated test code and remove the

default call to fail.

 fail("The test case is a prototype.");

 }

Run once for the test class

Run for every test

Test; Add multiple test methods with @Test

Running Tests

• Select “Test <project>” under the “R)un”
menu

• Or right-click the test class and select “Run”

9/18/2012

16

Determining Success or Failure

• The Assert class has the following methods:
– assertEquals: Overloaded to test if an actual value matches the expected

one. First parameter can be a String with a message.
• assertEquals(“Number mismatch”, 3, 3); // Passes if 3 == 3

– assertFalse: Use this if you know the function will always return false
(fails if it receives true)

– assertNotNull: If your method return null in the event of failure use this
to check to see if it succeeds

– assertNotSame: If your method is supposed to return an element from a
list you can use this to check if the element returned is the one from the
actual list

– assertNull: If your method return null in the event of failure use this to
check to see if it fails

– fail: Will fail the test, use this in conjunction with conditionals
– failNotEquals: Essentially the same as assertEquals but will fail the test if

they arent equal instead of causing an error
– failNotSame: Essentially the same as assertNotSame except instead of

causing an error it will cause a failure

Running Tests

• IDE displays results of each test; click on a test
to get more details and jump straight to the
failed case

9/18/2012

17

Happy Testing!

• JUnit makes it easy to create, maintain, run
tests

• Tests are kept separate from the actual project
so they don’t interfere with the “real” code

• If you don’t want to use a test framework you
could make your own with a little extra work
– Separate class with a main() that invokes all the

methods for the tests, outputs or asserts errors,
etc.

