
1

Software Metrics and Design

Principles

Chapters 5,8

What is Design?

• Design is the process of creating a plan or

blueprint to follow during actual

construction

• Design is a problem-solving activity that is

iterative in nature

• In traditional software engineering the

outcome of design is the design

document or technical specification (if

emphasis on notation)

2

“Wicked Problem”

• Software design is a “Wicked Problem”
– Design phase can’t be solved in isolation

• Designer will likely need to interact with users for
requirements, programmers for implementation

– No stopping rule
• How do we know when the solution is reached?

– Solutions are not true or false
• Large number of tradeoffs to consider, many acceptable
solutions

– Wicked problems are a symptom of another problem
• Resolving one problem may result in a new problem
elsewhere; software is not continuous

Systems-Oriented Approach

• The central question: how to decompose a
system into parts such that each part has
lower complexity than the system as a
whole, while the parts together solve the
user’s problem?

• In addition, the interactions between the
components should not be too
complicated

• Vast number of design methods exist

3

Design Considerations

• “Module” used often – usually refers to a method

or class

• In the decomposition we are interested in

properties that make the system flexible,

maintainable, reusable

– Abstraction

– Modularity

– Information Hiding

– Complexity

– System Structure

Abstraction

• Abstraction

– Concentrate on the essential features and ignore,

abstract from, details that are not relevant at the level

we are currently working on

– E.g. Sorting Module

• Consider inputs, outputs, ignore details of the algorithms until

later

– Two general types of abstraction

• Procedural Abstraction

• Data Abstraction

4

Procedural Abstraction

• Fairly traditional notion
– Decompose problem into sub-problems, which are
each handled in turn, perhaps decomposing further
into a hierarchy

– Methods may comprise the sub-problems and sub-
modules, often in time

Data Abstraction

• From primitive to complex to abstract data

types

– E.g. Integers to Binary Tree to Data Store for

Employee Records

• Find hierarchy in the data

5

Modularity

• During design the system is decomposed

into modules and the relationships among

modules are indicated

• Two structural design criteria as to the

“goodness” of a module

– Cohesion : Glue for intra-module

components

– Coupling : Strength of inter-module

connections

Levels of Cohesion

1. Coincidental
• Components grouped in a haphazard way

2. Logical
• Tasks are logically related; e.g. all input routines. Routines do not

invoke one another.

3. Temporal
• Initialization routines; components independent but activated about the

same time

4. Procedural
• Components that execute in some order

5. Communicational
• Components operate on the same external data

6. Sequential
• Output of one component serves as input to the next component

7. Functional
• All components contribute to one single function of the module

• Often transforms data into some output format

6

Using Program and Data Slices to Measure

Program Cohesion
• Bieman and Ott introduced a measure of program cohesion

using the following concepts from program and data

slices:

– A data token is any variable or constant in the module

– A slice within a module is the collection of all the statements that

can affect the value of some specific variable of interest.

– A data slice is the collection of all the data tokens in the slice that

will affect the value of a specific variable of interest.

– Glue tokens are the data tokens in the module that lie in more than

one data slice.

– Super glue tokens are the data tokens in the module that lie in

every data slice of the program

Measure Program Cohesion through 2 metrics:

- weak functional cohesion = (# of glue tokens) / (total # of data tokens)

- strong functional cohesion = (#of super glue tokens) / (total # of data tokens)

1-12

Procedure Sum and Product

(N : Integer;

Var SumN, ProdN : Integer);

Var I : Integer

Begin

SumN : = 0;

ProdN : = 1;

For I : = 1 to N do begin

SumN : = SumN + I

ProdN: = ProdN + I

End;
End;

7

1-13

Data Slice for SumN

(N : Integer;

Var SumN, ProdN : Integer);

Var I : Integer

Begin

SumN : = 0;

ProdN : = 1;

For I : = 1 to N do begin

SumN : = SumN + I

ProdN: = ProdN + I

End;

End;

Data Slice for SumN = N1·SumN1·I1·SumN2·01·I2·12·N2·SumN3·SumN4·I3

1-14

Data Slice for ProdN

Data Slice for ProdN = N1·ProdN1·I1·ProdN2·11·I2·12·N2·ProdN3·ProdN4·I4

(N : Integer;

Var SumN, ProdN : Integer);

Var I : Integer

Begin

SumN : = 0;

ProdN : = 1;

For I : = 1 to N do begin

SumN : = SumN + I

ProdN: = ProdN + I

End;

End;

8

1-15

Data token SumN ProdN

N1

SumN1

ProdN1

I1

SumN2

01

ProdN2

11

I2

12

N2

SumN3

SumN4

I3

ProdN3

ProdN4

I4

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1-16

Super Glue

S1 S2 S3

I I I Super Glue

I

I

I

I I I Super Glue

I

I I Glue

I I Glue

9

1-17

Functional Cohesion

• Strong functional cohesion (SFC) in this
case is the same as WFC

SFC = 5/17 = 0.204

• If we had computed only SumN or ProdN
then

SFC = 17/17 = 1

Coupling

• Measure of the strength of inter-module

connections

• High coupling indicates strong dependence

between modules

– Should study modules as a pair

– Change to one module may ripple to the next

• Loose coupling indicates independent modules

– Generally we desire loose coupling, easier to

comprehend and adapt

10

Types of Coupling

1. Content
– One module directly affects the workings of another

– Occurs when a module changes another module’s data

– Generally should be avoided

2. Common
– Two modules have shared data, e.g. global variables

3. External
– Modules communicate through an external medium, like a file

4. Control
– One module directs the execution of another by passing control
information (e.g. via flags)

5. Stamp
– Complete data structures or objects are passed from one module to
another

6. Data
– Only simple data is passed between modules

Modern Coupling

• Modern programming languages allow private,
protected, public access

• Coupling may be modified to indicate levels of
visibility, whether coupling is commutative

• Simple Interfaces generally desired
– Weak coupling and strong cohesion

– Communication between programmers simpler

– Correctness easier to derive

– Less likely that changes will propagate to other
modules

– Reusability increased

– Comprehensibility increased

11

1-21

Dharma (1995)

• Data and control flow coupling
– di = number of input data parameters

– ci = number of input control parameters

– do = number of output data parameters

– co = number of output control parameters

• Global coupling
– gd = number of global variables used as data

– gc = number of global variables used as control

• Environmental coupling
– w = number of modules called (fan-out)

– r = number of modules calling the module
under consideration (fan-in)

1-22

Dharma (1995)

• Coupling metric (mc)

mc = k/M, where k = 1

M = di + a* ci + do + b* co + gd + c* gc + w + r

where a=b=c=2

• The more situations encountered, the greater

the coupling, and the smaller mc

• One problem is parameters and calling counts

don’t guarantee the module is linked to the inner
workings of other modules

12

Cohesion and Coupling
C
o
h
e
s
io
n

C
o
u
p
lin

g

High Level

Low Level

Strong

Weak Loose

Tight

Henry-Kafura (Fan-in and Fan-out)

• Henry and Kafura metric measures the inter-modular

flow, which includes:

– Parameter passing

– Global variable access

– inputs

– outputs

• Fan-in : number of inter-modular flow into a program

• Fan-out: number of inter-modular flow out of a program

Module’s Complexity, Cp = (fan-in x fan-out) 2

for example above: Cp = (3 + 1) 2 = 16

Module, P

13

Information Hiding

• Each module has a secret that it hides from other
modules
– Secret might be inner-workings of an algorithm

– Secret might be data structures

• By hiding the secret, changes do not permeate the
module’s boundary, thereby
– Decreasing the coupling between that module and its
environment

– Increasing abstraction

– Increasing cohesion (the secret binds the parts of a module)

• Design involves a series of decisions. For each such
decision, questions are: who needs to know about these
decisions? And who can be kept in the dark?

Complexity

• Complexity refers to attributes of software that

affect the effort needed to construct or change a

piece of software

– Internal attributes; need not execute the software to

determine their values

• Many different metrics exist to measure

complexity

• Two broad classes

– Intra-Modular attributes

– Inter-Modular attributes

14

Intra-Modular Complexity

• Two types of intra-modular attributes

– Size-Based Metrics

• E.g. Lines of Code

– Obvious objections but still commonly used

– Structure-Based Metrics

• E.g. complexity of control or data structures

Halstead’s Software Science

• Size-based metric

• Uses number of operators and operands in a
piece of software
– n1 is the number of unique operators

– n2 is the number of unique operands

– N1 is the total number of occurrences of operators

– N2 is the total number of occurrences of operands

• Halstead derives various entities
– Size of Vocabulary: n = n1+n2
– Program Length: N = N1+N2
– Program Volume: V = Nlog2n

• Visualized as the number of bits it would take to encode the
program being measured

15

Halstead’s Software Science

– Potential Volume: V* = (2+n2)log(2+n2)
• V* is the volume for the most compact representation for the
algorithm, assuming only two operators: the name of the
function and a grouping operator. n2 is minimal number of
operands.

– Program Level: L = V*/V

– Programming Effort: E = V/L

– Programming Time in Seconds: T = E/18

– Numbers derived empirically, also based on speed
human memory processes sensory input

Halstead metrics really only measures the lexical complexity, rather than structural

complexity of source code.

Software Science Example

1. procedure sort(var x:array; n: integer)

2. var i,j,save:integer;

3. begin

4. for i:=2 to n do

5. for j:=1 to i do

6. if x[i]<x[j] then

7. begin save:=x[i];

8. x[i]:=x[j];

9. x[j]:=save

10. end

11. end

16

Software Science Example
Operator #

procedure 1

sort() 1

var 2

: 3

array 1

; 6

integer 2

, 2

beginNend 2

for..do 2

ifNthen 1

:= 5

< 1

[] 6

n1=14 N1=35

Operand #

x 7

n 2

i 6

j 5

save 3

2 1

1 1

n2=7 N2=25

Size of vocabulary: 21

Program length: 60

Program volume: 264

Program level: 0.04

Programming effort: 6000

Estimated time: 333 seconds

Structure-Based Complexity

• McCabe’s Cyclomatic Complexity

• Create a directed graph depicting the

control flow of the program

– CV = e – n + 2p

• CV = Cyclomatic Complexity

• e = Edges

• n = nodes

• p = connected components

17

Cyclomatic Example

1 2

For Sorting Code; numbers refer to line numbers

3 4 5 6

7 8 9

10

11

CV = 13 – 11 + 2*1 = 4

McCabe suggests an upper limit of 10

• T.J. McCabe’s Cyclomatic complexity metric is based on the

belief that program quality is related to the complexity of the

program control flow.

Shortcomings of Complexity

Metrics
• Not context-sensitive
– Any program with five if-statements has the same
cyclomatic complexity

– Measure only a few facts; e.g. Halstead’s method
doesn’t consider control flow complexity

• Others?

• Minix:
– Of the 277 modules, 34 have a CV > 10

– Highest has 58; handles ASCII escape sequences. A
review of the module was deemed “justifiably
complex”; attempts to reduce complexity by splitting
into modules would increase difficulty to understand
and artificially reduce the CV

18

System Structure – Inter-Module

Complexity
• The design may consist of modules and their relationships

• Can denote this in a graph; nodes are modules and edges are
relationships between modules

• Types of inter-module relationships:
– Module A contains Module B

– Module A follows Module B

– Module A delivers data to Module B

– Module A uses Module B

• We are mostly interested in the last one, which manifests itself via a
call graph
– Possible shapes:

• Chaotic

• Directed Acyclic Graph (Hierarchy)

• Layered Graph (Strict Hierarchy)

• Tree

Module Hierarchies

19

Graph Metrics

• Metrics use:
– Size of the graph

– Depth

– Width (maximum number of nodes at some level)

• A tree-like call graph is considered the best design
– Some metrics measure the deviation from a tree; the tree

impurity of the graph

– Compute number of edges that must be removed from the
graph’s minimum spanning tree

• Other metrics
– Complexity(M) = fanin(M)*fanout(M)

– Fanin/Fanout = local and global data flows

1-38

Software Metrics Etiquette

• Use common sense and organizational sensitivity when
interpreting metrics data.

• Provide regular feedback to the individuals and teams
who have worked to collect measures and metrics.

• Don’t use metrics to appraise individuals

• Work with practitioners and teams to set clear goals and
metrics that will be used to achieve them.

• Never use metrics to threaten individuals or teams.

• Metrics data that indicate a problem area should not be
considered “negative”. These data are merely an indicator
for process improvement.

• Don’t obsess on a single metric to the exclusion of other
important metrics.

