9/11/2012

Agile Planning

The problem with documentation

* Argument: “Heavy” documentation too much
for most business-style projects

| THEY CAN'T HANDLE CHANGE |

THEY BUILD ACCORDING TO SPEC ...
INSTEADC OF WHAT THE CLISTOMER WANTS

SUPER. CAN YOU PARK iT 7
WE JUST FROZE THE SPEC.

T kwvow wHar I 5410,

BUT THAT WAS 5IX MONTHS
Ao rrr

Goop News FIT
T WIST FIGURED OUT
WHAT OUR CUSTOMERS WANT.

Documentation

Humnt ... T wonoer IF I NEED
o 7O WORRY ABOUT LONG WEEKENDS
o

THEY MAKE BAD GUESS AND

(; l FALSE ASSUMFTIONS

THEY WASTE A LOT OF TIME ‘

ARE YOU TELLING ME
I JUIST SFENT THREE Py GAT}IER{NG REQUIREMENTS FOR A PRO«‘IECYJ

4”0("7”5 OF MY LIFE .. TH‘T WILL NEVER SEE THE LIGHT OF pay &

SUREA‘-\)‘ You ARE

Jagms wan f NO. T AM NOT JOKING,
Aﬂo STOF CALLING
M'E SHIRLEY T

English Documentation

* Can be ambiguous (one reason for more formal
documentation styles, e.g. ER diagram instead of
English)

— The man who hunts ducks out on weekends
— Fat people eat accumulates
— We painted the wall with cracks

— “This agreement shall be effective from the date it is made
and shall continue in force for a period of five (5) years
from the date it is made, and thereafter for successive five
(5) year terms, unless and until terminated by one year
prior notice in writing by either party.”

9/11/2012

User Stories vs. Spec/Requirements

User stories

Specifications &
requirement docs

Lean, accurate, just-in-time

Encourage face-to-face communication
Simplified planning

Cheap, fast, easy to create

Never out-of-date

Based on latest learnings

Enable real-time feedback

Avoid false sense of accuracy

Allow for team-based collaboration
and innovation

Heavy, inaccurate, out-of-date

Encourage guesswork (false assumptions)
Complex planning

Expensive, slow, hard to create

Always out-of-date

Based on litlle or no learning

Disable real-time feedback

Promote false sense of accuracy

Discourage open collaboration and innovation

Agiq, Prir-.c.ipiq,

The most efficient and effective method of
conveying information to and within a
development team is face-fo-face conversation.

9/11/2012

Agile User Stories

* Short descriptions of feature(s) the customer
would like to see in their software

e Usually fits on an index card

DETAILS T NEED TO GATHER
ARE GOING TO FIT ON THAT

ARE YOU TELLING ME ALL THE
LITTLE INDEX CARD 7

Screen shots
Validation Ermor checking

Student jogs jp
with eXpirag account
/ f \
Business rul les Security requirements
Terms & definiti

Elements of Good User Stories

* In language the customer understands

e Cuts end-to-end through layers of the
architecture

* Independent of other user stories (as much as
possible)

* Are negotiable, tradeoffs possible
e Are testable
e Are small and estimatable

9/11/2012

9/11/2012

Extracting User Stories

* May need to do lots of brainstorming, draw
lots of pictures

3= l:ll—j §IU L

g= ||-O¢ ||2]

Personas Flowcharts Scenarios

D |8-E=D

System maps Process flows Concept designs

dl—a

,ﬁé,
S X | !

Storyboards Paper prototypes Your own

In-Class Exercise

* | am the client and all of you are the
development team

* Help develop user stories for a thin section

9/11/2012

Check Stories

Check INVEST

— Independent, Negotiable, Valuable, Estimatable,
Small, Testable

Can something be re-cast as a constraint?

— E.g. “Must be fast” to “Must load within 2
seconds”

Scrub list, look for duplicates, consolidation or
splitting of user stories

Analysis and Estimation

You now have a stack of user stories
Identify stories that require clarification

Next we want to estimate how long they will
take o

Don't make promises you can't keep up here

Make them down here once you've had
achance to firm things up

2x ,
N

Variablility

1.25x 2\~
RS
© ime AN
§
g 0.8x
&
0.5x
0.25x

Figure 7.1: The cone of uncertainty reminds us of how greatly our esti-
mates can vary at different stages throughout the project.

9/11/2012

Relative Estimation

* Estimate coding time required for each story,
but not in actual time, but in “units”.
— Joshua Kerievsky uses NUTs: Nebulous Units of
Time
— ldea is to convey the relative sizes of stories

— Tough to do because you don’t know what units
represent until a few iterations are done, but they
will shape up as time goes on

Relative Estimation

If it takes 10 secs to eat
one of these ...
how long should it take to

devour these? \

14 cookies

9/11/2012

How Long?

Roll a snake-eyes (two ones)

three times using two die

P secs

Find the two missing cards
in a deck of cards

P s

Blow up six birthday balloons

P secs

Build a two-story house
of cards

P secs

Estimation
e Humans are better at relative than absolute

estimation

* Agile estimation is to size our stories relative
to each other and keep track of time taken

Add user
Print itinerary
Cancel trip
Book permit
Update permit
Search
Create device

Add option

Book car
Update hotel

- - Agile planning 101

Add swap trade ‘

are sized relatively ...

Cancel plan ‘

Once we know how fast the team can go ...

we can start setting expectations around dates. ’

9/11/2012

Units of Time

* Say a story we estimated to take 3 days really
took 4 days

* We could adjust actual calendar days to
“programming days” by multiplying
programming days by 1.333

EsT/mMaTE Actual
7108y 1.33 days
~_ Endless
Yo rejiggering?
32 oars 4 days
Fal

Mach havder a sg .

+o viork with precision?
5 pars 6.66 days

Point System

* Can avoid problems by using a point system

* Focus on relative sizes of the stories
— Reminds us that estimates are guesses
— Measure of pure size

— Simple
Large
o Medium g
No sweat Nothing we can't handle This is going to take

some effort

9/11/2012

Estimating Stories

» To estimate the user stories it may help to
break them into tasks; discrete steps to
complete the story

— E.g. to save a document, you may have the task of
creating the GUI to initiate the task, another task
for the disk operation

* Brainstorm with your team for an estimate of
units

e Tasks aren’t shared with the client

In-Class Exercise

* Estimate units for thin section pixel counter
user stories

10

9/11/2012

Determining Workload

You will need to convert from NUTS to actual time for an
iteration

Clients are initially not happy to get estimates in terms of
units

— Client: What’s a unit?
— Developers: We don’t know.
— Client: How many units can you do this week?

— Developers: We don’t know, but we can make an initial estimate,
and it will get better every iteration and even within an iteration.

If you estimated 20 NUTS the first iteration but you only
completed 10 NUTS then you can generate a better
estimate for the second iteration

— Project spike useful here to get an initial estimate
— Project velocity = NUTS completed / iteration

Estimating NUTs

Estimate for the first iteration how many person-hours
the group can collectively commit per week

— Allow for time when you’re not coding and not working

— Make an estimate; the next one can be better

Go to client and say how many units you can do per
week

— Consider how many people you have and how many hours
each person can actually work

— Sometimes you can make an estimate of units per hour

— E.g. if 1 unit/hour and 20 person hours then you can do 20
units per week

11

Client Reevaluation

* Give client the user stories, estimates, and the
total number of units you can do per week

* Client gets to pick the stories that add up to the
total number of units

* Client doesn’t get to add more stories beyond the
total number of units

— Important not to let the client get away with this,
remind the client they can do different stories the next
iteration

— Have to prioritize and drop something if another being
added

In-Class Exercise

» Estimate total hours, units per week for the
thin section pixel counter project

* Client to prioritize

9/11/2012

12

Dealing with Disappointment

* After a week perhaps you see your estimates
weren’t accurate

— Usually programmers underestimate the time
required

— Reassess where you are with your group and
immediately go to the client so he or she can
determine how you should spend your remaining time

* Sometimes this is good news

— If you only got to finish 10 units and you estimated 40,
then you have better data for the next iteration

— Estimates should get better each iteration; “surprises”
are early, not later

Rinse and Repeat

* Even if you didn’t complete as many stories as
estimated the first iteration, the client should be
happy with your honesty

* As the project progresses you should get better at
knowing what you can do in an iteration

* Continue to keep the client informed and track
where you are at all times

* Client may be unhappy the product is going
slowly, but it’s hard to argue with the data you
are gathering and sharing

9/11/2012

13

9/11/2012

Communication

* Use BlackBoard wiki or forum to share
information with your team members

* Good place to keep track of
— Meeting notes
— Issues or problems

— Assigned tasks, estimates, actual time taken
* Compare with actual time

Rules

1. The developers will be truthful in their estimates
and the customers will believe these estimates

2. The developers will refine their estimates and
the customers will refine their expectations
based on the actual achievements in each
iteration

3. During the iteration the developers will update
the client as to the progress of the iteration.
The client will use this information to quickly
refine what is required in the current iteration.

14

