
1

Transform and Conquer

Transform and Conquer

• Algorithms based on the idea of transformation

– Transformation stage

• Problem instance is modified to be more amenable to solution

– Conquering stage

• Transformed problem is solved

• Major variations are for the transform to perform:

– Instance simplification

– Different representation

– Problem reduction

2

Presorting

• Presorting is an old idea, you sort the data

and that allows you to more easily compute

some answer

– Saw this with quickhull, closest point

• Some other simple presorting examples

– Element Uniqueness

– Computing the mode of n numbers

Element Uniqueness

• Given a list A of n orderable elements,

determine if there are any duplicates of any

element

Brute Force:

for each x ∈ A

for each y ∈ {A – x}
if x = y return not unique

return unique

Presorting:

Sort A

for i ← 1 to n-1
if A[i] = A[i+1] return not unique

return unique

Runtime?

3

Computing a mode
• A mode is a value that occurs most often in a list of

numbers

– e.g. the mode of [5, 1, 5, 7, 6, 5, 7] is 5

– If several different values occur most often any of them can be

considered the mode

• “Count Sort” approach: (assumes all values > 0; what if

they aren’t?)

max ← max(A)

freq[1..max] ← 0

for each x ∈ A
freq[x] +=1

mode ← freq[1]

for i ← 2 to max

if freq[i] > freq[mode] mode ← i
return mode

Runtime?

Presort Computing Mode

Sort A

i ← 0

modefrequency ← 0
while i ≤ n-1

runlength ← 1; runvalue ← A[i]
while i+runlength ≤ n-1 and A[i+runlength] = runvalue

runlength += 1

if runlength > modefrequency

modefrequency ← runlength

modevalue ← runvalue
i+= runlength

return modevalue

4

Gaussian Elimination

• This is an example of transform and conquer through
representation change

• Consider a system of two linear equations:
A11x + A12y = B1

A21x + A22y = B2

• To solve this we can rewrite the first equation to solve for
x:

x = (B1 – A12y) / A11

• And then substitute in the second equation to solve for y.
After we solve for y we can then solve for x:

A21(B1 – A12y) / A11 + A22y = B2

Gaussian Elimination

• In many applications we need to solve a system of n
equations with n unknowns, e.g.:

A11x1 + A12x2 + … + A1nxn = B1

A21x1 + A22x2 + … + A2nxn = B2

…

An1x1 + An2x2 + … + Annxn = Bn

• If n is a large number it is very cumbersome to solve these
equations using the substitution method.

• Fortunately there is a more elegant algorithm to solve such
systems of linear equations: Gaussian elimination
– Named after Carl Gauss

5

Gaussian Elimination
The idea is to transform the system of linear equations into

an equivalent one that eliminates coefficients so we end up

with a triangular matrix.

A11x1 + A12x2 + … + A1nxn = B1

A21x1 + A22x2 + … + A2nxn = B2

…

An1x1 + An2x2 + … + Annxn = Bn

A11x1 + A12x2 + … + A1nxn = B1

0x1 + A22x2 + … + A2nxn = B2

…

0x1 + 0x2 + … + Annxn = Bn

In matrix form we can write this as: Ax = B � A’x = B’



















=



















=

nnnnn

n

n

B

B

B

B

AAA

AAA

AAA

A
...

...

...

...

...

2

1

21

22221

11211

Gaussian Elimination

• Why transform?
A11x1 + A12x2 + … + A1nxn = B1

0x1 + A22x2 + … + A2nxn = B2

…

0x1 + 0x2 + … + Annxn = Bn

• The matrix with zeros in the lower triangle (it is called an

upper triangular matrix) is easier to solve.

We can solve the last equation first, substitute into the

second to last, etc. working our way back to the first one.

6

Gaussian Elimination Example

• Solve the following

system:

2x1 – x2 + x3 = 1

4x1 + x2 – x3 = 5

x1 + x2 + x3 = 0














−

−

0111

5114
1112

subtract 2*row1

subtract ½*row1

















−

−

−

2

1

2

1

2

3
0

3330
1112

subtract ½*row2 













−

−

−

2200

3330
1112

Gaussian Elimination

• In our example we replaced an equation with a sum or

difference with a multiple of another equation

• We might also need to:

– Exchange two equations

– Replace an equation with its nonzero multiple

• Pseudocode:

for i ← 1 to n do A[i,n+1] ← B[i]

for i ← 1 to n – 1

for j ← i+1 to n do

for k ← i to n+1 do

A[j,k] ← A[j,k] – A[i,k]*A[j,i] / A[i,i]

O(n3) algorithm

7

Textbook Chapter 6

• Skipping other matrix operations, balanced

trees, heaps, binary exponentiation

Problem Reduction

• If you need to solve a problem, reduce it to

another problem that you know how to

solve; we saw this idea already with NPC

problems

Problem 1 to

be solved

reduction
Problem 2 solvable

by algorithm A

algorithm ASolution to

Problem 2

cleanup
Solution to

Problem 1

8

Linear Programming

• One more example of problem reduction; linear
programming

• A Linear Program (LP) is a problem that can be expressed
as follows (the so-called Standard Form):
– minimize (or maximize) cx

– subject to
• Ax = b

• x >= 0

• where x is the vector of variables to be solved for, A is a
matrix of known coefficients, and c and b are vectors of
known coefficients. The expression "cx" is called the
objective function, and the equations "Ax=b" are called the
constraints.

Linear Programming Example

• Wyndor Glass produces glass windows and doors

• They have 3 plants:

– Plant 1: makes aluminum frames and hardware

– Plant 2: makes wood frames

– Plant 3: produces glass and makes assembly

• Two products proposed:

– Product 1: 8’ glass door with aluminum siding (x1)

– Product 2: 4’ x 6’ wood framed glass window (x2)

• Some production capacity in the three plants is available to

produce a combination of the two products

• Problem is to determine the best product mix to maximize

profits

9

Wyndor Glass Co. Data

$5,000$3,000Profit per batch

18233

12202

4011

21Plant

Product

Production time

available per

week (hr)

Production time per batch (hr)

Formulation:

Maximize z = 3x1 + 5x2 (objective to maximize $$)

Subject to

x1 <= 4 (Plant One)

2x2 <= 12 (Plant Two)

3x1 + 2x2 <= 18 (Plant Three)

x1, x2 >= 0 (Non-negativity requirements)

Example 2: Spacing to Center Text
• To center text we need to indent it ourselves by using an

appropriate number of space characters. The complication
is that we have two types of spaces: the usual space and
option-space (also known as non-breaking space). These
two spaces are different widths.

• Given three numbers
– a (the width of a normal space),

– b (the width of an option-space), and

– c (the amount we want to indent),

• Find two more numbers
– x (the number of normal spaces to use), and

– y (the number of option-spaces to use),

• So that ax+by is as close as possible to c.

10

Spacing Problem
• Visualize problem in 2 dimensions, say a=11, b=9, and

c=79. Each blue dot in the picture represents the

combination of x option-spaces and y spaces. The red line

represents the ideal width of 79 pixels.

• We want to find a blue dot that's as close as possible to the

red line.

Spacing Problem

• If we want to find the closest point below
the line then our equations become:

x ≥ 0

y ≥ 0

ax + by ≤ c

• The linear programming problem is to
maximize ax + by ≤ c to find the closest
point to the line

11

Possible Solutions

• Brute Force

Possible Solutions

• Simplex method

– Consider only points along

boundary of “feasible

region”

– Won’t go into the algorithm

here, but it finds solutions in

worst case exponential time

but generally runs

efficiently in polynomial

time

12

Knapsack Problem

• We can reduce the knapsack problem to a solvable

linear programming problem

• Discrete or 0-1 knapsack problem:

– Knapsack of capacity W

– n items of weights w1, w2 … wn and values v1, v2 … vn

– Can only take entire item or leave it

• Reduces to:

i

n

i

i
xv∑

=1

Maximize where xi = 0 or 1

Constrained by: Wxw
i

n

i

i
≤








∑

=1

