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Transform and Conquer

Transform and Conquer

• Algorithms based on the idea of transformation

– Transformation stage

• Problem instance is modified to be more amenable to solution

– Conquering stage

• Transformed problem is solved

• Major variations are for the transform to perform:

– Instance simplification

– Different representation

– Problem reduction
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Presorting

• Presorting is an old idea, you sort the data 

and that allows you to more easily compute 

some answer

– Saw this with quickhull, closest point

• Some other simple presorting examples

– Element Uniqueness

– Computing the mode of n numbers

Element Uniqueness

• Given a list A of n orderable elements, 

determine if there are any duplicates of any 

element

Brute Force:

for each x ∈ A

for each y ∈ {A – x}
if x = y return not unique

return unique

Presorting:

Sort A

for i ← 1 to n-1
if A[i] = A[i+1] return not unique

return unique

Runtime?
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Computing a mode
• A mode is a value that occurs most often in a list of 

numbers

– e.g. the mode of [5, 1, 5, 7, 6, 5, 7] is 5

– If several different values occur most often any of them can be 

considered the mode

• “Count Sort” approach:  (assumes all values > 0;  what if 

they aren’t?)

max ← max(A)

freq[1..max] ← 0

for each x ∈ A
freq[x] +=1

mode ← freq[1]

for i ← 2 to max

if freq[i] > freq[mode]  mode ← i
return mode

Runtime?

Presort Computing Mode

Sort A

i ← 0

modefrequency ← 0
while i ≤ n-1

runlength ← 1;   runvalue ← A[i]
while i+runlength ≤ n-1  and A[i+runlength] = runvalue

runlength += 1

if runlength > modefrequency

modefrequency ← runlength

modevalue ← runvalue
i+= runlength

return modevalue
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Gaussian Elimination

• This is an example of transform and conquer through 
representation change

• Consider a system of two linear equations:
A11x + A12y = B1

A21x + A22y = B2

• To solve this we can rewrite the first equation to solve for 
x:

x = (B1 – A12y) / A11

• And then substitute in the second equation to solve for y.  
After we solve for y we can then solve for x:

A21(B1 – A12y) / A11 + A22y = B2

Gaussian Elimination

• In many applications we  need to solve a system of n 
equations with n unknowns, e.g.:

A11x1 + A12x2 + … + A1nxn = B1

A21x1 + A22x2 + … + A2nxn = B2

…

An1x1 + An2x2 + … + Annxn = Bn

• If n is a large number it is very cumbersome to solve these 
equations using the substitution method.

• Fortunately there is a more elegant algorithm to solve such 
systems of linear equations:  Gaussian elimination
– Named after Carl Gauss
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Gaussian Elimination
The idea is to transform the system of linear equations into 

an equivalent one that eliminates coefficients so we end up 

with a triangular matrix.

A11x1 + A12x2 + … + A1nxn = B1

A21x1 + A22x2 + … + A2nxn = B2

…

An1x1 + An2x2 + … + Annxn = Bn

A11x1 + A12x2 + … + A1nxn = B1

0x1 + A22x2 + … + A2nxn = B2

…

0x1 + 0x2 + … + Annxn = Bn

In matrix form we can write this as:  Ax = B   � A’x = B’
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Gaussian Elimination

• Why transform?
A11x1 + A12x2 + … + A1nxn = B1

0x1 + A22x2 + … + A2nxn = B2

…

0x1 + 0x2 + … + Annxn = Bn

• The matrix with zeros in the lower triangle (it is called an  

upper triangular matrix) is easier to solve. 

We can solve the last equation first, substitute into the

second to last, etc.  working our way back to the first one.
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Gaussian Elimination Example

• Solve the following 

system:

2x1 – x2 + x3 = 1

4x1 + x2 – x3 = 5

x1 + x2 + x3 = 0
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Gaussian Elimination

• In our example we replaced an equation with a sum or 

difference with a multiple of another equation

• We might also need to:

– Exchange two equations

– Replace an equation with its nonzero multiple

• Pseudocode:

for i ← 1 to n do A[i,n+1] ← B[i]

for i ← 1 to n – 1

for j ← i+1 to n do

for k ← i to n+1 do

A[j,k] ← A[j,k] – A[i,k]*A[j,i] / A[i,i]

O(n3)  algorithm
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Textbook Chapter 6

• Skipping other matrix operations, balanced 

trees, heaps, binary exponentiation

Problem Reduction

• If you need to solve a problem, reduce it to 

another problem that you know how to 

solve;  we saw this idea already with NPC 

problems

Problem 1 to

be solved

reduction
Problem 2 solvable

by algorithm A

algorithm ASolution to

Problem 2

cleanup
Solution to

Problem 1
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Linear Programming

• One more example of problem reduction;  linear 
programming

• A Linear Program (LP) is a problem that can be expressed 
as follows (the so-called Standard Form):
– minimize (or maximize)   cx

– subject to
• Ax  = b

• x >= 0

• where x is the vector of variables to be solved for, A is a 
matrix of known coefficients, and c and b are vectors of 
known coefficients. The expression "cx" is called the 
objective function, and the equations "Ax=b" are called the 
constraints.

Linear Programming Example

• Wyndor Glass produces glass windows and doors

• They have 3 plants:

– Plant 1: makes aluminum frames and hardware

– Plant 2: makes wood frames

– Plant 3: produces glass and makes assembly

• Two products proposed:

– Product 1: 8’ glass door with aluminum siding   (x1)

– Product 2: 4’ x 6’ wood framed glass window    (x2)

• Some production capacity in the three plants is available to 

produce a combination of the two products

• Problem is to determine the best product mix to maximize 

profits
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Wyndor Glass Co. Data

$5,000$3,000Profit per batch

18233

12202

4011

21Plant

Product

Production time 

available per 

week (hr)

Production time per batch (hr)

Formulation:

Maximize z = 3x1 + 5x2 (objective to maximize $$)

Subject to 

x1 <= 4 (Plant One) 

2x2 <= 12 (Plant Two) 

3x1 + 2x2 <= 18 (Plant Three) 

x1, x2 >= 0 (Non-negativity requirements) 

Example 2:  Spacing to Center Text
• To center text we need to indent it ourselves by using an 

appropriate number of space characters.  The complication 
is that we have two types of spaces:  the usual space and 
option-space (also known as non-breaking space). These 
two spaces are different widths. 

• Given three numbers
– a (the width of a normal space),

– b (the width of an option-space), and

– c (the amount we want to indent),

• Find two more numbers
– x (the number of normal spaces to use), and

– y (the number of option-spaces to use),

• So that ax+by is as close as possible to c. 
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Spacing Problem
• Visualize problem in 2 dimensions, say a=11, b=9, and 

c=79.  Each blue dot in the picture represents the 

combination of x option-spaces and y spaces. The red line 

represents the ideal width of 79 pixels. 

• We want to find a blue dot that's as close as possible to the 

red line.

Spacing Problem

• If we want to find the closest point below 
the line then our equations become:

x ≥ 0

y ≥ 0

ax + by ≤ c

• The linear programming problem is to 
maximize ax + by ≤ c  to find the closest 
point to the line
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Possible Solutions

• Brute Force

Possible Solutions

• Simplex method

– Consider only points along 

boundary of “feasible 

region”

– Won’t go into the algorithm 

here, but it finds solutions in 

worst case exponential time 

but generally runs 

efficiently in polynomial 

time
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Knapsack Problem

• We can reduce the knapsack problem to a solvable 

linear programming problem

• Discrete or 0-1 knapsack problem:

– Knapsack of capacity W

– n items of weights w1, w2 … wn and values v1, v2 … vn

– Can only take entire item or leave it

• Reduces to:
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