Transform and Conquer

Transform and Conquer

- Algorithms based on the idea of transformation
 - Transformation stage
 - Problem instance is modified to be more amenable to solution
 - Conquering stage
 - Transformed problem is solved
- Major variations are for the transform to perform:
 - Instance simplification
 - Different representation
 - Problem reduction

Presorting

- Presorting is an old idea, you sort the data and that allows you to more easily compute some answer
 - Saw this with quickhull, closest point
- Some other simple presorting examples
 - Element Uniqueness
 - Computing the mode of *n* numbers

Gaussian Elimination

- This is an example of transform and conquer through representation change
- Consider a system of two linear equations:

 $A_{11}x + A_{12}y = B_1$ $A_{21}x + A_{22}y = B_2$

- To solve this we can rewrite the first equation to solve for x:
 - $\mathbf{x} = (\mathbf{B}_1 \mathbf{A}_{12}\mathbf{y}) / \mathbf{A}_{11}$
- And then substitute in the second equation to solve for y. After we solve for y we can then solve for x:

 $A_{21}(B_1 - A_{12}y) / A_{11} + A_{22}y = B_2$

Textbook Chapter 6

• Skipping other matrix operations, balanced trees, heaps, binary exponentiation

W Y Plant	rndor Glass Co. L Production time per batch (hr) Product		JATA Production time available per week (hr)
	1	1	0
2	0	2	12
3	3	2	18
Profit per batch	\$3,000	\$5,000	
Formulation:			
Maximize $z = 3x_1 + 5x_2$		(objective to maximize \$\$)	
Subject to	. 2	-	
x ₁ <= 4		(Plant One)	
$2x_2 \le 12$		(Plant Two)	
$3x_1 + 2x_2 \le 18$		(Plant Three)	
$x_1, x_2 >= 0$		(Non-negativity requirements)	

Knapsack Problem • We can reduce the knapsack problem to a solvable linear programming problem • Discrete or 0-1 knapsack problem: • Knapsack of capacity W • n items of weights $w_1, w_2 \dots w_n$ and values $v_1, v_2 \dots v_n$ • Can only take entire item or leave it • Reduces to: Maximize $\sum_{i=1}^{n} v_i x_i$ where $x_i = 0$ or 1 Constrained by: $\left(\sum_{i=1}^{n} w_i x_i\right) \leq W$