CS351
I ntractable Problems

Intractable problems refer to problems that we cannot solve in areasonable time on a
computer as the size of the problem grows. These are considered to be any problem that
grows faster than polynomial time with respect to the input.

Recall that:
* Problems solvable in polynomial time on a computer also take polynomial time
on aTuring Machine
* Thedividing line between solvable and unsolvable problemsis typically
exponential vs. polynomial

The Class of Languages P

If a(deterministic) TM M has some polynomial p(n) such that M never makes more than
p(n) moves when presented with input of length n, then M is said to be a polynomial-time
TM.

P isthe set of languages that are accepted by polynomial-time TM's. Equivaently, Pis
the set of problems that can be solved by areal computer by a polynomial-time
algorithm.

* Why? If we can solve the problem in polynomial time on a computer we can build
apolynomial time TM that also solves the problem. The solution can be used to
verify if astring isin the language or not, all in polynomial time (although
perhaps alarger degree of polynomia on the TM than on the computer)..

* Many familiar problems are in P: sorting algorithms, graph reachability, matrix
multiplication, etc.

The Class of Languages NP

A nondeterministic TM that never makes more than p(n) movesin any sequence of
choices for some polynomial p) is said to be apolynomial-time NTM.

NP isthe set of languages that are accepted by polynomial-time NTM's. Equivalently,
you can think of NP as the set of problems where a proposed solution can be verified as
correct by areal computer using a polynomial-time a gorithm.

Why isthis? To seeif aparticular input string belongs to alanguage described by a
NTM, our NTM can fork off multiple NTM’sfor al the computations that verify if the
string is accepted or not. Say that one of these branches |eads to an accepting state. In
paralel, we are also examining al the other branches that are not accepting. Thisis
equivalent to verifying the solution is correct (the branch that leads to the accepting
state). Other solutions, for example, ones that are not correct, are being examined in
paralel aong the other branches.

Many problems are in NP but appear not to bein P. A ssimple example isajigsaw puzzle.
This can be very difficult to solve (presumably not in polynomial time) but it is usually
very easy to verify if a proposed solution is correct just by looking at it. Here are some
problemsin NP but appear to not bein P:
» TSP (isthere atour (where we visit all nodes once) of a graph with total edge
weight < k?)
* SAT (doesthis Boolean expression have a satisfying assignment of its
variables (i.e. makes the Boolean expression true?)
* CLIQUE (does this graph have a set of k nodes with edges between every
pair?).
There are many more...

One of the great mathematical questions of our age: Is there anything in NP that is not in
P? Obvioudly, P [0 NP since adeterministic Turing machine is also a nondeterministic
Turing machine. Additionaly, if we can solve a problem in polynomial time, we can use
thisalgorithm to verify if a proposed solution is correct in polynomial time.

NP Complete Problems

If we can't resolve the P = NP question, we can at |east demonstrate that certain problems
in NP are “hardest” in the sense that if any one of them werein P, then P= NP.

» Cadled NP-complete problems

* Intellectua leverage: each NP-complete problem's apparent difficulty re-enforces
the belief that they are all hard.

Before we continue, let’ s revisit polynomial reducibility:

A problem P1 is polynomial reducible to P2 if there exists a polynomial time
transformation from P1 to P2. We denotethisas PLIP2. In other words, if we have a
problem P1, then in polynomial time we can make a mapping so that a solution to P2 will
solve problem P1; i.e. P2 is"at least as hard” as P1.

Definition: A problem P1 is NP-complete (NPC) if:

1. ItisinNPand

2. For every other problem P20 NP, P2[1P1. In other words, every other NP problem
can be solved by P1 by doing a polynomial time mapping so that P2 fits the
parameters of P1. We may also need to do a polynomial time mapping from the
solution of P1 to give us the solution to P2.

The total timeto solve P2 isthen: time(P1) + polynomia-mapping-to-P1 +
Polynomial-mapping-to-p2
= time(P1) + polynomial-time

Thetotal runtime for other problemsin NP is then time(P1) + polynomial-time.

If we could show that time(P1) is polynomial, then it means every problem in NP could
be solved in polynomial time!

This leads to the theorem that if any NP-Complete problem isin P, then P=NP.

NP

@)

NP

@

The Clay Mathematics Institute has offered a million dollar prize to anyone that can
prove that P=NP or that PZNP. So hopefully you have been paying attention....

Some NP Complete Problems

The SAT, TSP, and CLIQUE problems we saw earlier are al NP Complete.
Here are afew others:

Graph Coloring : A coloring of agraph G=(V,E) isamapping C:V - SwhereSisa
finite set of “colors’ such that if (u,v) isan edgein E, then C(v)#C(u). In other words,
adjacent vertices are not assigned the same color. X(G) is the chromatic number of G, or
the smallest number of colors needed to color G.

1. Optimization Problem: Given G, determine X (G) and produce an optimal coloring
(i.e. one that uses only X(G) colors).

2. Decision Problem: Given G and a positive integer k, isthere acoloring of G using at
most k colors? If so, G issaid to be k-colorable).

Bin Packing: Suppose we have an unlimited number of bins each of capacity 1, and n
objectswith sizessl, s2, ... sy, whereeach s is between 0 and 1.

1. Optimization Problem: Determine the smallest number of binsinto which the
objects can be packed (and find an optimal packing).

2. Decision Problem: Given, in addition to the inputs described, an integer k, do the
objectsfit in k bins?

Applications of bin packing include packing datain computer memories (e.g., fileson
disk tracks, program segments into memory pages, and fields of afew bits each into
memory words) and filling orders for a product (e.g. fabric or lumber) to be cut from
large, standard-size pieces.

Knapsack Problem: You are athief and have broken into abank. The bank has n objects
of sizelweight s, s2, s3, ... sy (such as gold, silver, platinum, etc. bars) and “ profits’ p1,
p2, p3, ... pn Where pl isthe profit for object s1. Y ou have with you a knapsack that can
carry only alimited size/weight of capacity C.

1. Optimization Problem: Find the largest total profit of any subset of the objects
that fitsin the knapsack (and find a subset that achieves the maximum profit).

2. Decision Problem: Givenk, isthere a subset of the objects that fitsin the
knapsack and has a total profit at least k (or equal to k)?

Many different problems fit the knapsack problem, especially in economy or optimizing
the use of resources with alimited capacity.

Subset Sum: Thisisasimpler version of the knapsack problem. Theinput isa positive
integer C and n objects whose sizes are positive integerssi, s2, Ss.

1. Optimization Problem: Among subsets of the objects with a sum at most C, what
isthe largest subset sum?

2. Decision Problem: Isthere a subset of the objects whose sizes add up to exactly
C? eg. electora college problem

3SAT: Thisisaspecia case of the SAT problem where all formulas are in Conjunctive
Normal Form with exactly three literals. CNF isthelogical AND of a group of OR
terms. For example, the following clause isin CNF where the X’ s are Boolean variables:

(x1 Ox2 Ox3) O (x4 Ox5 O-x6) (x4 0-x9 O-x3)

1. Optimization Problem: What is an assignment to the variables to satisfy the entire
clause (i.e. makeit true?) This means each individual clause must contain at
least oneliteral that isassigned true. Thisis harder than it looks. For example,
assigning TRUE to x1, x2, and x3 could make the first clause true, but then with
x3 true, this could make the last clause FALSE since we have -x3.

2. Decision Problem: Does an assignment to the variables exist that satisfies the
clause?

Minesweeper Game: The Minesweeper consistency problem is to determine if various
states of Minesweeper are valid or not. This problem has shown to be NP-Compl ete.

There are many other NP Complete problems.

Proving a problem is NP Complete
If we have a single problem P-NPC known to be NP-Compl ete, then:

1. For all other problems P2 in NP, P21 P-NPC.
2. Thisimpliesthat to show anew problem P-NEW is NPC:

- We have to show that P-NEW isin NP (solution can be verified in P time)
- We have to show that for some other NPC problem such as P-NPC,
P-NPC O P-NEW

By transitivity, then al other problemsin NP are [1 P-NEW
Because { All NP} O P-NPC [0 P-NEW

It isimportant to show that P-NPC [0 P-NEW and not P-NEW O P-NPC. If our known
NPC problem P1 can be polynomially transformed into P-NEW, then P-NEW must be at
least as hard as P-NPC. However, if we show that P-NEW can polynomially be
transformed into P-NPC, this doesn’t tell us anything about how hard P-NEW might be.
It just says we can use something that is “hard” to solve something that might be really

easy.

Example: A Hamilton circuit is a path in a graph that visits each node exactly once.
Assume we know that the directed Hamilton circuit problem is NP-Complete (it is).
Show that the undirected Hamilton circuit problem is also NP-Compl ete.

1. Show that the undirected problem isin NP by verifying solution in polynomial time.

Answer: Given aproposed solution, we can start at any vertex and follow the path,
marking each vertex aswe go. When we reach the original vertex without having
visited any marked vertices, and after having visited every vertex, we are done and
canoutput aYES. O(V) time.

2. Show that the directed problem is polynomial reducible to the undirected problem;
i.e. we can turn the directed problem into an undirected graph and use that to solve
the directed problem.

Consider below:

e
T

How can we turn thisinto an undirected graph and not lose information? We could

just make the links bidirectional, but then we can get circuits we couldn’t get in the
original. We need to preserve the direction.

Solution: Expand each node into three nodes, where the first node is an input node,
the middle atransition node, and the third an output node. The middle node ensures a
path within each node from 1-2-3 or 3-2-1 in sequence, otherwise we could
potentialy visit “half” anode at atime.

24/ veod
s@z
¥J

Note that al nodes must be visited in sequence 1-2-3 or 3-2-1, since 3 and 1 are always
connected, and 2 isalways in the middle. Thus any hamilton circuit discovered on the

undirected graph translates back into the directed graph. We can do the transformation
both waysin O(V+E) time, where E is the edges and V are the vertices.

Example: Show that the Traveling Salesman Problem (is there a Hamilton Circuit with
total edge weight cost < k?) isNPC. Assume that we know the Hamilton Circuit problem
isNPC.

Thisis easy to show, because the Hamilton Circuit problem is a specia case of the TSP.

1. First, show that TSPisin NP. Thisiseasy for the decision version of the
problem. Given a proposed solution (atour and the constant k) we simply add up
the cost on all the edges, make sure thisisavalid tour, and that the total cost is<
k. If so, the solution is correct.

2. Show that Hamilton Circuit is reducible to TSP. To do this, we simply construct
aspecial version of the TSP. We make aweight of 1 for every edge in the graph
and set k equal to any number > the total number of nodes. Any answer found by
the TSP solution must also therefore be avalid Hamilton Circuit.

It is very difficult to prove that the general Hamilton Circuit problem is NP Complete.

Example: Show that the Clique problem is NP Complete. In the Clique problem, you are
given an undirected graph. A cliqueis asubgraph of the larger graph, where every two
nodes of the subgraph are connected by an edge.

A k-cliqueisaclique that contains k nodes. The following is an example of a graph
having a 5-clique:

)

-/

Assume that we know that 3SAT is a NP Complete problem.

1. Show that Cliqueisin NP. Given a proposed solution consisting of n nodes,
systematically loop through each node, and seeiif it is connected to all of the other
nnodes. Thisrequires O(n%) runtime.

2. Show that 3SAT is polynomial reducible to Clique. To do this, we create a
specia graph that is designed to mimic the behavior of the variables and clauses
inthe 3SAT problem.

Let ® be aformulawith k clauses such as:

® = (a, Ub, Uc) U, Ub, Ucy) O ... (a, Ub, Uc)
The reduction creates the undirected graph G asfollows. The nodesin G are
organized into k groups of three nodes each called the triplesty, to, ... tk. Eachtriple
represents one of the clausesin ®. Edges are present between all pairs of nodesin G,
except for nodes in the same triple, and nodes of opposite labels, e.g. x; and —x;. For

example, given:

O = (x, Ux, Uxy) U(mx, U7, U7xy) O (7x; Ux, Ox,) we construct:

Now, if we can solve the clique problem on this graph, then @ is satisfied if and only if G
has a k-clique.

Suppose ak-clique existson G. Since there are no edges within atriple, this clique must
consist of asingle node from each triple. Now, assign avalue of “true” to each nodein
the k-clique. Thistranslatesinto assigning “true” to the corresponding Boolean value in
the 3SAT problem. Since we have no edges connecting contradictory values (e.g., NOT)
then we have found a set of variables that makes each individual clause of 3SAT true and
therefore the entire clause must be true.

What you should be asking yourself:

We can show other algorithms to be NP-Complete by showing an existing NPC problem
can be polynomially reduced to the new algorithm. But how do we prove the first NPC
problem?

Answer: The first problem proven to be NP-Complete is the circuit satisfiability problem.
Thisisknown as Cook’s Theorem. Based on Cook’ s theorem, other theorists were able
to prove hundreds of other problemsto be NP-complete. We will look at aversion of the
CSAT problem in the next lecture.

