
Non-Comparison Based Sorting

How fast can we sort?
 Insertion-Sort O n()2
 Merge-Sort, Quicksort (expected), Heapsort :Θ(lg)n n

Can we do faster? What is the theoretical best we can do?

So far we have done comparison sorts: A sort based only on comparisons between input
elements. E1<E2, E1=E2, E1>E2. We will show that any comparison-based sort MUST
make Ω(lg)n n comparisons. This means that merge sort and heap sort are optimal.
This is important because it is not always possible that you can prove that your
algorithm is the best one possible for a problem!

A decision tree is used to represent the comparisons of a sorting algorithm. Assume that
all inputs are distinct. A decision tree compares all possible inputs to each other to
determine the sequence of outputs.

Decision Tree for three elements a1,a2,a3 : If at the root, a1≤ a2 go left and compare a2
to a3, otherwise go right and compare a1 to a3. Each path represents a different ordering
on a1,a2,a3.

<= >

<= >

<= >

<= >

<= >
a1,a2,a3

a1,a3,a2 a3,a1,a2

a1,a3

a2,a3

a2,a1,a3

a2,a3,a1 a3,a2,a1

a2,a3

a1,a3

a1,a2

 This type of decision tree will have n! leaves – one for each permutation of the
input.
Any comparison-based sorting algorithm will have to go through the steps in the decision
tree as a minimum (can do more comparisons if we want to, of course!)

Example of 9,2,6 :

<= >

<= >

<= >

<= >

<= >
a1,a2,a3

a1,a3,a2 a3,a1,a2

a1,a3

a2,a3

a2,a1,a3

2,6,9 a3,a2,a1

2,6

9,6

9,2

The sorted elements are 2,6,9, in order of a2,a3,a1.

Decision trees can model comparison sorts. For any sorting algorithm:
1. One tree for each input length n
2. An algorithm “splits” at each decision/comparison unwinding the actual execution

into a tree path
3. The tree is all possible execution traces

What is the height of the decision tree? This gives us the minimum number of
comparisons necessary to sort the input.

For n inputs, the tree must have n! leaves. A binary tree of height h has no more than 2h
leaves:

n h!≤ 2

Take log:

lg(!)n h≤

Stirling’s approximation says that n n n e n en n! (/) (/)> >2 π

So:

hennn
henn

henn
hen n

≤−
≤−

≤
≤

lglg
)lg(lg

)/lg(
)/lg(

This means h=Ω(lg)n n and we are DONE! We need to do at least nlgn comparisons to
reach the bottom of the tree.

Does this mean that we can’t do any better?? NO! (well, in some cases)
We can actually do some types of sorting in LINEAR TIME.

Counting Sort

This may work in O(n) time. How? Because it uses no comparisons! But we have to
make assumptions about the size and nature of the input.

Input: A[1..n] where A[I]={1…k}
Output: B[1..n], sorted
Uses: C[1..k] auxiliary storage

Idea: Using random access array, count up number of times each input element appears
and then collect them together.

Algorithm:
 Count-Sort(A,n)
 for I←1 to k do C[I] ←0 ; Initialize to 0
 for j ←1 to n do C[A[j]] ++ ; Count
 j ←1
 for I←1 to k do
 if (C[I]>0) then
 for z ←1 to C[I] do

 B[j]=I
 j++

Ex: A=[1 5 3 2 2 4 9]
 C=[0 0 0 0 0 0 0 0 0]
 C=[1 2 1 1 1 0 0 0 1]
 B=[1 2 2 3 4 5 9]

This works! How long does it take? O(n+k). If k=n, then this runs in O(n) time.
However, a bad example would be a input list like A[1,2,99999999].

One disadvantage of the current algorithm: it is not stable
An algorithm is stable if the occurrences of a value I appear in the same order in the
output as they do in the input. That is, ties between two numbers are broken by the rule
that whichever number appears first in the input array appears first in the output array.

Why do we want a stable algorithm? If the thing we are sorting is just a key of a record
(perhaps a zip code, or a job indicating priority where we want the first one in to have
precedence) then stability may be important.

Ex: A[3 5a 9 2 4 5b 6]
 Sorts to A[2 3 4 5a 5b 6 9]
 and not to A[2 3 4 5b 5a 6 9]

Can modify algorithm to make it stable:

 Stable-Count-Sort(A,n)
 for I←1 to k do C[I] ←0 ; Initialize to 0
 for j ←1 to n do C[A[j]] ++ ; Count
 for I←2 to k do
 C[I] ←C[I]+C[I-1] ; Sum elements so far
 ; C[I] contains num elements <= I
 for j ←n downto 1 do
 B[C[A[j]]] ←A[j]
 C[A[j]] ←C[A[j]]-1

Example: A=[1 5 3 2 2 4 9]
 C=[0 0 0 0 0 0 0 0 0]

 C=[1 2 1 1 1 0 0 0 1]
 C=[1 3 4 5 6 6 6 6 7]
 B=[. 9]
 C=[1 3 4 5 6 6 6 6 6]
 B=[. . . . 4 . 9]
 …
 B=[1 2 2 3 4 5 9]

This version is stable, since we fetch from the original array.

Radix Sort

Works like the punch-card readers of the early 1900’s. Only works on input items with
digits!
Idea somewhat counterintuitive: Sort on the least significant digit first.

 Radix-Sort(A,d,n) ; A is an n element array, each element d digits long
 for i ←1 to d
 do Use a stable sort to sort array A on digit i
Example:
 A
 492 031 102 031
 299 492 204 102
 102 102 031 204
 031 → 204 → 835 → 299
 996 835 492 492
 204 996 996 835
 835 299 299 996

Sort must be stable so numbers chosen in the correct order! Assumes that lower order
digits are already sorted to work.

If each digit is not large, counting sort is a good choice to use for the sort method.
If k is the maximum value of the digit, then counting sort takes Θ()k n+ time for one
pass. We have to make d passes, so the total runtime is Θ()dk dn+ .

If d is a constant and k is smaller than O(n), Radix-Sort runs in O(n) linear time!

Radix or Counting sorts are simple to code and the method of choice if the input is of the
right form.

Bucket Sort

Similar to count sort, but uses a “bucket” to hold a range of inputs. Works for real
numbers!
Like the other sorts, bucket sort is fast because it assumes something about the input:

1. Input is randomly generated
2. Input elements randomly distributed over the interval [0..1]. In many cases we can

divide by some “max” value to force the input key for comparison to be between 0
and 1. This assumption means that elements are generated with uniform probability
over [0..1] or that each element has the same likelihood of being generated.

Idea:
1. Divide [0..1] into n equal sized parts or “buckets”
2. Put each of the n inputs into one of the buckets. Some buckets may be empty and

some may have more than 1 element.
3. Sort each bucket.
4. To produce output, go through the buckets in order, listing the elements in each.

Linked Lists is a good mechanism for storing the buckets.

 Bucket-Sort(A,n)
 for i ←1 to n do
 Insert A[I] into list B[nA[I]]
 for i ←0 to n-1 do
 sort list B[I] with insertion sort
 concatenate the lists B[0], B[1], … B[n-1] together in order

Buckets are automatically numbered in this case from 0..n-1

All the lines but line 5 take O(n) time in the worst case.

Line 5 is insertion sort which takes O(n2) time but since the input is generated uniformly
we dont expect any bucket to have many elements in it so Insertion-Sort should be called
on very small lists.

Example:

A=[0.44 0.12 0.73 0.29 0.67 0.49]
Bucket I will get the values between I/n and (I+1)/n since buckets are numbered from 0 to
n-1.

B
0..0.16 → 0.12
0.16..0.33 → 0.29
0.33..0.50 → 0.44 → 0.49
0.50..0.66 →
0.66..0.83 →0.73 →0.67
0.83..1 →

Sort the buckets with insertion sort and then combine buckets to get:

0.12 0.29 0.44 0.49 0.67 0.73

Informal Argument on the average time:

Since any element in A comes from [0..1] with an equal probability then the probability
that an element e is in bucket B[I] is 1/n (each bucket covers 1/n of [0..1].

This means that the average number of elements that end up in bucket B[I] is 1. There is
a little more to the analysis than this, but the basic idea is that the distribution of the input
will cause the calls to Insertion-Sort to be on very short lists and so the other steps in the
algorithm will use more time. The average running time of Bucket-Sort is then
T(n)=O(n).

Postman Sort

There are many other sorting algorithms that have been proposed. Robert Ramey
proposed the Postman Sort in the August 1992 issue of the C Programming journal. We
will briefly discuss it here and may use it as an exercise. The full article is available at
http://www.rrsd.com/psort/cuj/cuj.htm . Although the article makes the sorting algorithm
sound revolutionary, it is really just a variant on bucket sort.

To quote Ramey’s article regarding a generalized distributed sorting algorithm:

When a postal clerk receives a huge bag of letters he distributes them into
other bags by state. Each bag gets sent to the indicated state. Upon arrival,
another clerk distributes the letters in his bag into other bags by city. So the
process continues until the bags are the size one man can carry and deliver.
This is the basis for my sorting method which I call the postman's sort.

Suppose we are given a large list of records to be ordered alphabetically on
a particular field. Make one pass through the file. Each record read is added
to one of 26 lists depending on the first letter in the field. The first list
contains all the records with fields starting with the letter "A" while the last
contains all the records with fields starting with the letter "Z". Now we
have divided the problem down to 26 smaller subproblems. Now we
address subproblem of sorting all the records in the sublist corresponding to
key fields starting with the letter "A". If there are no records in the "A"
sublist we can proceed to deal with the "B" sublist. If the "A" sublist
contains only one record it can be written to output and we are done with
that sublist. If the "A" sublist contains more that one record, it must be
sorted then output. Only when the "A" list has been disposed of we can
move on to each of the other sublists in sequence. The records will be
written to the output in alphabetical order. When the "A" list contains more
than one record it has to be sorted before it is output. What sorting
algorithm should be used? Just like a real postman, we use the postman's
sort. Of course we just apply the method to the second letter of the field.
This is done to greater and greater depths until eventually all the words
starting with "A" are written to the output. We can then proceed to deal
with sublists "B" through "Z" in the same manner.

Example: Consider sorting “BOB”, “BILL”, BOY”, “COW”, “DOG”

How fast is it? (Exercise for the reader)

