
Non-Comparison Based Sorting 
 
How fast can we sort? 
 Insertion-Sort O n( )2  
 Merge-Sort, Quicksort (expected), Heapsort  :Θ( lg )n n  
 
Can we do faster?  What is the theoretical best we can do? 
 
So far we have done comparison sorts:  A sort based only on comparisons between input 
elements.  E1<E2, E1=E2, E1>E2.  We will show that any comparison-based sort MUST 
make Ω( lg )n n  comparisons.  This means that merge sort and heap sort are optimal.  
This is important because it is not always possible that you can prove that your 
algorithm is the best one possible for a problem! 
 
A decision tree is used to represent the comparisons of a sorting algorithm.  Assume that 
all inputs are distinct.  A decision tree compares all possible inputs to each other to 
determine the sequence of outputs. 
 
Decision Tree for three elements a1,a2,a3 :  If at the root, a1≤  a2 go left and compare a2 
to a3, otherwise go right and compare a1 to a3.  Each path represents a different ordering 
on a1,a2,a3. 
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 This type of decision tree will have n! leaves – one for each permutation of the 
input. 
Any comparison-based sorting algorithm will have to go through the steps in the decision 
tree as a minimum (can do more comparisons if we want to, of course!) 
 
Example of 9,2,6 : 
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The sorted elements are 2,6,9, in order of a2,a3,a1. 
 
Decision trees can model comparison sorts.  For any sorting algorithm: 
1.  One tree for each input length n 
2.  An algorithm “splits” at each decision/comparison unwinding the actual execution 

into a tree path 
3.  The tree is all possible execution traces 
 
What is the height of the decision tree?  This gives us the minimum number of 
comparisons necessary to sort the input. 
 
For n inputs, the tree must have n! leaves.  A binary tree of height h has no more than 2h 
leaves: 
 
n h!≤ 2  
 
Take log: 
 
lg( !)n h≤  
 
Stirling’s approximation says that n n n e n en n! ( / ) ( / )> >2 π  

So:  

hennn
henn

henn
hen n

≤−
≤−

≤
≤

lglg
)lg(lg

)/lg(
)/lg(

 

 
This means h=Ω( lg )n n  and we are DONE!  We need to do at least nlgn comparisons to 
reach the bottom of the tree. 
 
Does this mean that we can’t do any better??  NO!  (well, in some cases) 
We can actually do some types of sorting in LINEAR TIME. 
 



Counting Sort 
 
This may work in O(n) time.  How?  Because it uses no comparisons!  But we have to 
make assumptions about the size and nature of the input. 
 
Input: A[1..n] where A[I]={1…k} 
Output: B[1..n], sorted 
Uses: C[1..k] auxiliary storage 
 
Idea: Using random access array, count up number of times each input element appears 
and then collect them together. 
 
Algorithm: 
 Count-Sort(A,n) 
  for I←1 to k do C[I] ←0  ; Initialize to 0 
  for j ←1 to n do C[A[j]] ++  ; Count 
  j ←1 
  for I←1 to k do 
   if (C[I]>0) then  
    for z ←1 to C[I] do 

    B[j]=I 
     j++ 
 
Ex: A=[1 5 3 2 2 4 9] 
   C=[0 0 0 0 0 0 0 0 0] 
 C=[1 2 1 1 1 0 0 0 1] 
 B=[1 2 2 3 4 5 9] 
 
This works!  How long does it take?  O(n+k).  If k=n, then this runs in O(n) time.   
However, a bad example would be a input list like A[1,2,99999999]. 
 
One disadvantage of the current algorithm:  it is not stable 
An algorithm is stable if the occurrences of a value I appear in the same order in the 
output as they do in the input.  That is, ties between two numbers are broken by the rule 
that whichever number appears first in the input array appears first in the output array. 
 
Why do we want a stable algorithm?  If the thing we are sorting is just a key of a record 
(perhaps a zip code, or a job indicating priority where we want the first one in to have 
precedence) then stability may be important. 
 
Ex: A[ 3 5a 9 2 4 5b 6] 
     Sorts to  A[2 3 4 5a 5b 6 9] 
 and not to A[2 3 4 5b 5a 6 9] 
 
Can modify algorithm to make it stable: 



 
 Stable-Count-Sort(A,n) 
  for I←1 to k do C[I] ←0  ; Initialize to 0 
  for j ←1 to n do C[A[j]] ++  ; Count 
  for I←2 to k do 
   C[I] ←C[I]+C[I-1]  ; Sum elements so far 
       ; C[I] contains num elements <= I  
  for j ←n downto 1 do 
   B[C[A[j]]] ←A[j] 
   C[A[j]] ←C[A[j]]-1 

 
 
 

Example: A=[1 5 3 2 2 4 9] 
   C=[0 0 0 0 0 0 0 0 0] 

  C=[1 2 1 1 1 0 0 0 1] 
  C=[1 3 4 5 6 6 6 6 7] 
  B=[ . . . . . . 9] 
  C=[1 3 4 5 6 6 6 6 6] 
  B=[ . . . . 4 . 9] 
  … 
  B=[1 2 2 3 4 5 9] 
 
This version is stable, since we fetch from the original array. 
 
 
Radix Sort 
 
Works like the punch-card readers of the early 1900’s.  Only works on input items with 
digits! 
Idea somewhat counterintuitive: Sort on the least significant digit first. 
 
 Radix-Sort(A,d,n)  ; A is an n element array, each element d digits long 
  for i ←1 to d 
   do    Use a stable sort to sort array A on digit i 
Example: 
 A 
 492  031  102  031 
 299  492  204  102 
 102  102  031  204 
 031 →  204 →  835 →  299 
 996  835  492  492 
 204  996  996  835 
 835  299  299  996 
 



Sort must be stable so numbers chosen in the correct order!  Assumes that lower order 
digits are already sorted to work. 
 
If each digit is not large, counting sort is a good choice to use for the sort method. 
If k is the maximum value of the digit, then counting sort takes Θ( )k n+ time for one 
pass.  We have to make d passes, so the total runtime is Θ( )dk dn+ . 
 
If d is a constant and k is smaller than O(n), Radix-Sort runs in O(n) linear time! 
 
Radix or Counting sorts are simple to code and the method of choice if the input is of the 
right form. 
 
Bucket Sort 
 
Similar to count sort, but uses a “bucket” to hold a range of inputs.  Works for real 
numbers! 
Like the other sorts, bucket sort is fast because it assumes something about the input: 
 
1.  Input is randomly generated 
2.  Input elements randomly distributed over the interval [0..1].  In many cases we can 

divide by some “max” value to force the input key for comparison to be between 0 
and 1.  This assumption means that elements are generated with uniform probability 
over [0..1] or that each element has the same likelihood of being generated. 

 
Idea: 
1.  Divide [0..1] into n equal sized parts or “buckets” 
2.  Put each of the n inputs into one of the buckets.    Some buckets may be empty and 

some may have more than 1 element. 
3.  Sort each bucket. 
4.  To produce output, go through the buckets in order, listing the elements in each. 
 
Linked Lists is a good mechanism for storing the buckets. 
 
 Bucket-Sort(A,n) 
 for i ←1 to n do 
  Insert A[I] into list B[nA[I]] 
 for i ←0 to n-1 do 
  sort list B[I] with insertion sort 
 concatenate the lists B[0], B[1], … B[n-1] together in order 
 
Buckets are automatically numbered in this case from 0..n-1 
 
 
 
All the lines but line 5 take O(n) time in the worst case. 



Line 5 is insertion sort which takes O(n2) time but since the input is generated uniformly 
we dont expect any bucket to have many elements in it so Insertion-Sort should be called 
on very small lists. 
 
Example: 
 
A=[0.44 0.12 0.73 0.29 0.67 0.49] 
Bucket I will get the values between I/n and (I+1)/n since buckets are numbered from 0 to 
n-1. 
 
B 
0..0.16  →  0.12 
0.16..0.33 →  0.29 
0.33..0.50 →  0.44 →  0.49 
0.50..0.66 →  
0.66..0.83 →0.73 →0.67 
0.83..1  →  
 
Sort the buckets with insertion sort and then combine buckets to get: 
 

0.12 0.29 0.44 0.49 0.67 0.73 
 
Informal Argument on the average time: 
 
Since any element in A comes from [0..1] with an equal probability then the probability 
that an element e is in bucket B[I] is 1/n  (each bucket covers 1/n of [0..1]. 
 
This means that the average number of elements that end up in bucket B[I] is 1.  There is 
a little more to the analysis than this, but the basic idea is that the distribution of the input 
will cause the calls to Insertion-Sort to be on very short lists and so the other steps in the 
algorithm will use more time.  The average running time of Bucket-Sort is then 
T(n)=O(n). 
 
 
Postman Sort 
 
There are many other sorting algorithms that have been proposed.  Robert Ramey 
proposed the Postman Sort in the August 1992 issue of the C Programming journal.  We 
will briefly discuss it here and may use it as an exercise.  The full article is available at 
http://www.rrsd.com/psort/cuj/cuj.htm .  Although the article makes the sorting algorithm 
sound revolutionary, it is really just a variant on bucket sort. 
 
To quote Ramey’s article regarding a generalized distributed sorting algorithm: 
 



When a postal clerk receives a huge bag of letters he distributes them into 
other bags by state. Each bag gets sent to the indicated state. Upon arrival, 
another clerk distributes the letters in his bag into other bags by city. So the 
process continues until the bags are the size one man can carry and deliver. 
This is the basis for my sorting method which I call the postman's sort.  
 
Suppose we are given a large list of records to be ordered alphabetically on 
a particular field. Make one pass through the file. Each record read is added 
to one of 26 lists depending on the first letter in the field. The first list 
contains all the records with fields starting with the letter "A" while the last 
contains all the records with fields starting with the letter "Z". Now we 
have divided the problem down to 26 smaller subproblems. Now we 
address subproblem of sorting all the records in the sublist corresponding to 
key fields starting with the letter "A". If there are no records in the "A" 
sublist we can proceed to deal with the "B" sublist. If the "A" sublist 
contains only one record it can be written to output and we are done with 
that sublist. If the "A" sublist contains more that one record, it must be 
sorted then output. Only when the "A" list has been disposed of we can 
move on to each of the other sublists in sequence. The records will be 
written to the output in alphabetical order. When the "A" list contains more 
than one record it has to be sorted before it is output. What sorting 
algorithm should be used? Just like a real postman, we use the postman's 
sort. Of course we just apply the method to the second letter of the field. 
This is done to greater and greater depths until eventually all the words 
starting with "A" are written to the output. We can then proceed to deal 
with sublists "B" through "Z" in the same manner.  

 
Example:  Consider sorting “BOB”, “BILL”, BOY”, “COW”, “DOG” 
 
How fast is it?  (Exercise for the reader) 
 
 


