Maximum Flow

Chapter 26

Flow Graph

A common scenario is to use a graph to
represent a “flow network” and use it to answer
questions about material flows

Flow is the rate that material moves through the
network

Each directed edge is a conduit for the material
with some stated capacity

Vertices are connection points but do not collect
material

— Flow into a vertex must equal the flow leaving the
vertex, flow conservation
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Sample Networks

Nodes Arcs Flow
telephone exchanges, | cables, fiber optics, voice, video,
computers, satellites | microwave relays packets
gates, registers, .

wires current
processors
joints rods, beams, springs | heat, energy
reservoirs, pumping s L
stations, lakes pipelines fluid, oil
stocks, companies transactions money
airports, rail yards, highways, railbeds, frelght,

. . . vehicles,
street intersections airway routes
passengers

sites bonds energy

Flow Concepts

Source vertex s

— where material is produced

Sink vertex t

— where material is consumed

— Flow conservation

flow from source to sink

For all other vertices — what goes in must go out

Goal: determine maximum rate of material




Formal Max Flow Problem

— Graph G=(V,E) — a flow network
+ Directed, each edge has capacity c(u,v) 20
» Two special vertices: source s, and sink t
+ For any other vertex v, there is a path s—...»>v—...—t

— Flow —afunctionf: VxV—> R
» Capacity constraint. For all u, ve V: flu,v) < c(u,v)
» Skew symmetry: For all u, ve V: flu,v) =—f(v,u)
» Flow conservation: Forallue V—{s, &}:
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Cancellation of flows

+ We would like to avoid two positive flows
in opposite directions between the same
pair of vertices

— Such flows cancel (maybe partially) each
other due to skew symmetry
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Max Flow

 We want to find a flow of maximum value
from the source to the sink
— Denoted by |f]|

Edmonton Saskatoon

Vancouver 20 Winnipeg

Calgary Regina

Max Flow, |f| =19
Oris it?

Best we can do?

Lucky Puck Distribution Network

Ford-Fulkerson method

» Contains several algorithms:
— Residue networks
— Augmenting paths

» Find a path p from s to t (augmenting path), such that there is
some value x > 0, and for each edge (u,v) in p we can add x
units of flow

— f(u,v) + x <c(u,v)
Augmenting Path?
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FORD-FULKERSON-METHOD(G, 5, 1)

1 initialize flow f to 0

2 while there exists an augmenting path p
3 do augment flow f along p

4 return f




Residual Network

+ To find augmenting path we can find any path in the

residual network:

— Residual capacities: c{u,v) = c(u,v) — f(u,v)
* i.e. the actual capacity minus the net flow from u to v
* Net flow may be negative

— Residual network: G;=(V,E;), where

E;={(uv)e VxV:c{uv) >0}
— Observation — edges in E; are either edges in E or their
reversals: |E{ < 2|E]
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Residual Graph

+ Compute the residual graph of the graph with the
following flow:

10/15




Residual Capacity and Augmenting
Path

« Finding an Augmenting Path

— Find a path from s to tin the residual graph

— The residual capacity of a path pin G¢.
cdp) = min{c{u,v): (u,v) is in p}

* i.e. find the minimum capacity along p

— Doing augmentation: for all (u,v) in p, we just
add this c{p) to f(u,v) (and subtract it from
f(v,u))

— Resulting flow is a valid flow with a larger
value.

Residual network and augmenting path

Figure 26.3 (a) The flow network G and flow f of Figure 26.1(b). (b) The residual network Gy
with augmenting path p shaded; its residual capacity is cp(p) = c(va,v3) = 4. (c) The flow
in G that results from augmenting along path p by its residual capacity 4, (d) The residual network
induced by the flow in (c).




The Ford-Fulkerson method

Ford-Fulkerson (G, s, t)

1 for each edge (u,v) in G.E do

2 f(u,v) «<f(v,u) «< 0

3 while there exists a path p from s to t 1in residual
network G; do

4 cs = min{ce(u,v): (u,v) is in p}

5 for each edge (u,v) in p do

6 f(u,v) < £f(u,v) + c;

7 f(v,u) < -f(u,v)

8 return f

The algorithms based on this method differ in how they choose p in step 3.
If chosen poorly the algorithm might not terminate.

Execution of Ford-Fulkerson (1)
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Left Side = Residual Graph Right Side = Augmented Flow




Execution of Ford-Fulkerson (2)
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Cuts

» Does the method find the minimum flow?
— Yes, if we get to the point where the residual graph has no path from s
tot
— Acutis a partitionof Vinto Sand T=V - S, suchthatse Sandte T

— The net flow (f(S,T)) through the cut is the sum of flows f(u,v), where s
eSandte T

* Includes negative flows back from T to S

— The capacity (c(S,T)) of the cut is the sum of capacities c(u,v), where s
eSandte T
» The sum of positive capacities
— Minimum cut — a cut with the smallest capacity of all cuts.
|f|=t f(S,T) i.e. the value of a max flow is equal to the capacity of a min
cut. -
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Cut capacity =24 - — — — "\ Min Cut capacity = 21




Max Flow / Min Cut Theorem

1. Since lfLS c(S,T) for all cuts of (S,T) then if |f] =
c(S,T) then ¢(S,T) must be the min cut of G

2. This implies that f is a maximum flow of G

3. This implies that the residual network G;
contains no augmenting paths.

+ |f there were augmenting paths this would contradict
that we found the maximum flow of G

e 122-2>3->1 ... and from 2->3 we have that
the Ford Fulkerson method finds the maximum
f|OV\rl]if the residual graph has no augmenting
paths.

Worst Case Running Time

» Assuming integer flow

« Each augmentation increases the value of the flow by
some positive amount.

» Augmentation can be done in O(E).

» Total worst-case running time O(E|f*|), where f* is the
max-flow found by the algorithm.

« Example of worst case:

(a) (b) (c)
Augmenting path of 1 Resulting Residual Network Resulting Residual Network




Edmonds Karp

» Take shortest path (in terms of number of
edges) as an augmenting path —
Edmonds-Karp algorithm
— How do we find such a shortest path?

— Running time O(VE?), because the number of
augmentations is O(VE)

— Skipping the proof here

— Even better method: push-relabel, O(V2E)
runtime

Multiple Sources or Sinks

« What if you have a problem with more than one source
and more than one sink?

» Modify the graph to create a single supersource and
supersink
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Application — Bipartite Matching

Example — given a community with n men and m
women

« Assume we have a way to determine which
couples (man/woman) are compatible for
marriage
— E.g. (Joe, Susan) or (Fred, Susan) but not (Frank,

Susan)
* Problem: Maximize the number of marriages
— No polygamy allowed

— Can solve this problem by creating a flow network out
of a bipartite graph

Bipartite Graph

» A bipartite graph is an undirected graph G=(V,E) in
which V can be partitioned into two sets V, and V, such
that (u,v) € E implies eitheru e V,andv e V,, or vice
versa.

» Thatis, all edges go between the two sets V,and V,and
not within V, and V,.
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Model for Matching Problem

» Men on leftmost set, women on rightmost
set, edges if they are compatible
®—
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A matching Optimal matching

Solution Using Max Flow

» Add a supersouce, supersink, make each
undirected edge directed with a flow of 1

Since the input is 1, flow conservation prevents multiple matchings
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