
Lecture Notes, CS351 
 
Chapter 4: Recurrence Relations : Iterative and The Master Method 
 
Iteration Method: Expand the terms into a summation, and solve algebraically 
 
Example: 
 
T(n)= Theta(1)  for n=1 
T(n) = 3T(n/4) + n  for n>1 
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We can plug this back into the original recurrence relation: 
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We can keep on going: 
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If we stop at this point and do some math: 
 
T(n) = 27T(n/64) + 9(n/16) + 3(n/4) + n 
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There’s a pattern here!  If we consider i as the index, where i=1 gives us n+(3/4)n, then 
we can generalize this as i increases: 
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How far does i go?  Does it increase to infinity?  NO at some point we will have to stop. 
But we already know when we stop – we stop at T(1) because at this point there is no 
more recursion, we just return a constant number for the amount of work to do. 
 
If we stop at T(1), this means we will stop when 1=(n/4i). 
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So we can now express the recurrence relation as: 
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substituting Θ( )1 for T(n/4i) since we will only do a constant amount of work on the last 
iteration. 
 
We can summarize this as a single summation.  First recall that 
 
 3 4 4 3log logn n=  ; this is sublinear since log43 < 1 
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T n n n( ) ( )log≤ +4 4 3Θ   ;T n n o n( ) ( )≤ +4   ; loose upper bound so use little-o 
 
This means that the recurrence is O(n). 
 
This method is accurate but can result in a lot of algebra to keep track of; can also get 
very challenging for more complicated recurrence relations. 
 
Second Example: T(n)=1   if n=1 
   T(n)=4T(n/2)+n if n>1 
 
T(n) =4T(n/2) + n 
 =4(4T(n/4)+n/2)+n 
 =4(4(4T(n/8)+n/4)+n/2)+n 
 =64T(n/8) + 4n +2n +n 
 =n + 2n +4n + 64T(n/8) 
 =n + 2n + 4n + … +2jn + … 4iT(n/2i)  ; hard part to figure out 
 
What is the last term?  When (n/2i)=1  ! i=lgn 
 



T(n)  = n + 2n + 4n + 8n + … 2in  + … 4lgn  Θ( )1  
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Let’s let m=lgn-1.  Then: 
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Sometimes a recursion tree can help: 
 
Recursion Tree:  Help to keep track of the iterations 
 
Given T(n) = 2T(n/2)+n2 
 
 
 
 
 
 
 
 
 
 
 
 
How deep does the tree go? 
We stop at the leaf, and we know we’re at a leaf when we have a problem of size 1. 
 
1=(n/2i)2 

so n2=22i  ; n=2i  ; i=lgn 
 
The amount of work done is then: 
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bigger than n2. 
 
 
 
One more example:  T(n) = T(n/3) + T(2n/3) + n 

 
Each level does work of size n; if we just know the height of the tree, i, the total work is 
ni. 
 
The tree stops when the leaf is of size 1.   The hard part is to figure out the formula based 
on the height: 
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i n= log /3 2  
 
 
So the total work is (log )/3 2 n n   or O(nlog 3/2 n). 
 
Master Method: 

If the form of a recurrence is:  ( ) ( )T n aT
n
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then we can use the Master Method, which is a cookbook-style method for proving the 
runtime of recurrence relations that fit its parameters.  Note that not all recurrence of the 
above form can be solved through the master method.  We won’t prove the master 
method, but will give an argument as to how it works. 
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In the master method: 
 
•  a is the number of subproblems that are solved recursively; i.e. the number of 

recursive calls. 
•  b is the size of each subproblem relative to n; n/b is the size of the input to the 

recursive call. 
•  f(n) is the cost of dividing and recombining the subproblems. 
 
Recursion tree example: T(n)=aT(n/b)+f(n) 
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How many leaves are there?  

a NumberLeavesheight =  
a nb bn alog log=  
 

Work at the leaves is :  ( ) ( )Θ Θ1 n nb ba alog log=  
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this does not include the cost of the leaves. 
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The time T(n) might be dominated by: 
1.  The cost of the leaves 
2.  The cost of the divide/combine or the root 
3.  Evenly distributed at all the levels 
 
The master method tells us what the asymptotic running time will be depending on which 
cost is the highest (dominates). 
 
If the form is: 
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Then based on comparing f(n) and n b alog we know the running time given the following 
three cases: 
 
•  If f n O n b a( ) ( )log= −ε  for some constant ε > 0 then T n n b a( ) ( )log= Θ   ; cost of leaves 

dominates. 
•  If f n n b a( ) ( )log= Θ  then T n n nb a( ) ( lg )log= Θ ;  cost is evenly distributed 

•  If f n n b a( ) ( )log= +Ω ε for some constant ε > 0  and if af
n
b
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c<1 and all sufficiently large n, then T n f n( ) ( ( ))= Θ   ; divide/conquer or root cost 
dominates 
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So a=9, b=3, f(n)=n 
Case 1 works for f n O n b a( ) ( )log= −ε .  We need to prove this relationship by showing that: 
 f n O n b a( ) ( )log= −ε  
 n O n O n= =− −( ) ( )log3 9 2ε ε  
 if ε = 1  then n=O(n) and case 1 is satisfied. 
Therefore: 
 T n n n nb a( ) ( ) ( ) ( )log log= = =Θ Θ Θ3 9 2  
 
In this example, the cost of the leaves has dominated the runtime. 
 



Example: 
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 ; Merge Sort 

 
So a=2, b=2, f(n)=n 
Check case 1: 
 Is f n O n b a( ) ( )log= −ε ? 
  n O n= −( )log2 2 ε  
  n O n= −( )1 ε  
 For any epsilon>0, n is bigger, so case 1 does not work. 
 
Check case 2: 
 Is  f n n b a( ) ( )log= Θ  
  n n n= =Θ Θ( ) ( )log2 2    YES 
 therefore: 
  T n n n n n n nb a( ) ( lg ) ( lg ) ( lg )log log= = =Θ Θ Θ2 2  
 
Cost is evenly distributed among leaves and upper part of tree. 
 
 
Example: 
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So a=1, b=3/2, f(n)=1 
 
Case 1 does not work (exercise for the reader) 
Case 2: 
 Is  f n n b a( ) ( )log= Θ ? 
  1 13 21 0= = =Θ Θ Θ( ) ( ) ( )log /n n   YES 
 therefore: 
  T n n n n n n n nb a( ) ( lg ) ( lg ) ( lg ) (lg )log log /= = = =Θ Θ Θ Θ3 21 0  
 
Cost is again evenly distributed. 
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a=3,b=4,f(n)=nlgn 



 
Case 1 and 2 don’t fit (exercise for the reader) 
Case 3: 
 Is f n n b a( ) ( )log= +Ω ε ? 
  n n n nlg ( ) ( )log .= =+ +Ω Ω4 3 0 79ε ε  
 YES, if epsilon =0.21, then n n nlg ( )= Ω  
 
We also need to show the extra condition: 
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Example: 
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Try case 1: 
 Is f n O n b a( ) ( )log= −ε ? 
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 NO, for epsilon>0, f(n) is larger. 
 
 



Try case 2: 
 Is f n n b a( ) ( )log= Θ ? 
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 NO, grows smaller than n2 . 
Try case 3:  
 Is f n n b a( ) ( )log= +Ω ε ? 
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 NO, for epsilon > 0,  f(n) is smaller, not bigger. 
 
Master method does not work for this recurrence relation! 
(Solution is Θ( lg lg )n n2  by substitution) 
 
 
 
Selection Problem 
 
Consider the problem of finding the ith smallest element in a set of n unsorted elements.  
This is referred to as the selection problem or the ith “order statistic”.   
 
If i=1 this is finding the minimum of a set 
 i=n this is finding the maximum of a set 
 i=n/2 this is finding the median or halfway point of a set  -- common problem 
 
Selection problem defined as: 
 
Input: A set of n numbers and a number i, with 1<=i<=n 
Output: The element x in A that is larger than exactly i-1 other elements in A. 
 
How many comparisons are necessary to determine the selection? 
Say we want to find the minimum: 
 
 Lower bound of at least n-1 comparisons to see every other element 
 Think as a tournament: 
 
 Pick contender 
 Contender competes with another (comparison) 
 Winner is the smallest element 
 
 Every element except the winner must lose one match. 
 This is a simple example to show that we need at least n-1 comparisons, we will 
use this technique later in more complex examples to show a lower bound. 



Selecting the ith smallest element: 
 

Can do in Θ( lg )n n  time easily by sorting with Merge Sort,  
and then pick A[i].  But can do better! 

 
Consider if the set of n numbers is divided as follows: 
 

S1:   < p S2:   > pp
 

 
Note that the elements in S1 are not sorted, but all of them are smaller than element p 
(partition).  We know that  p is the (|S1| +1)th smallest element of n.   We will use this 
idea later to also sort numbers (known as quicksort). 
 
Now consider the following algorithm to find the ith smallest element from Array A: 
 

•  Select a pivot point, p, out of array A. 
•  Split A into S1 and S2, where all elements in S1 are <p and all elements in S2 

are >p 
•  If i=|S1|+1 then p is the ith smallest element.    
•  Else if i<=|S1| then the ith smallest element is somewhere in S1.  Repeat the 

process recursively on S1 looking for the ith smallest element. 
•  Else i is somewhere in S2.  Repeat the process recursively looking for the i-

|S1|-1 smallest element. 
 
Question: How do we select p?  Best if p is close to the median.  If p is the largest 
element or the smallest, the problem size is only reduced by 1. 

•  Always pick the same element, n or 1 
•  Pick a random element 
•  Pick 3 random elements, and pick the median 
•  Other method we will see later 

 
How do we partition once we have p? 
 
If A contains:  [5 12 8 6 2 1 4 3] 
 
Can create two subarrays, S1 and S2.  For each element x in A, if x<p put it in S1, if 
x>=p put it in S2. 
 
p=5 
S1: [2 1 4 3] 
S2: [5 12 8 6] 



 
This certainly works, but requires additional space to hold the subarrays.  We can also do 
the partitioning in-place, using no additional space: 
 
Partition(A,p,r)  ; Partitions array A[p..r] 
  x ←A[p]   ; Choose first element as partition element 
  i ←p-1 
  j ← r+1 
  while true 
 do repeat      

 j ← j-1 
       until 
  A[j] ≤  x 
       repeat 
  i ← i+1 
       until A[i] ≥ x 
 if i<j 
       then exchange A[i] ↔ A[j] 
       else return j   ; indicates index of partitions 
 
Example: 
 
A[p..r] = [5 12 8 6 2 1 4 3] 
x=5 
 
 5 12 2 6 2 1 4 3 
      i         j 
 
 5 12 2 6 2 1 4 3 
      i        j 
 
 5 12 2 6 2 1 4 3 
    i       j 
 
 3 12 2 6 2 1 4 5  swap 

i       j 
 
 3 12 2 6 2 1 4 5 

i      j 
 
 3 12 2 6 2 1 4 5 

i     j 
 
 3 4 2 6 2 1 12 5  swap 

i     j 



 
 3 4 2 6 2 1 12 5 

i    j 
 
 3 4 2 6 2 1 12 5 

i   j 
 
 3 4 2 6 2 1 12 5 

i  j 
 
 3 4 2 1 2 6 12 5  swap 

i  j 
 
 3 4 2 1 2 6 12 5 

i j 
 
 3 4 2 1 2 6 12 5 

ij 
 
 3 4 2 1 2 6 12 5  crossover, i>j 

 j i 
 
Return j.  All elements in A[p..j] smaller or equal to x, all elements in A[j+1..r] bigger or 
equal to x.  (Note this is a little different than the initial example, where we split the sets 
up into < p, p, and > p.  In this case the sets are <=p or >=p.  (Consider the case if all 
array elements are identical). If the pivot point selected happens to be the largest or 
smallest value, it will also be guaranteed to split off at least one value).  This routine 
makes only one pass through the array A, so it takes time Θ( )n .  No extra space required 
except to hold index variables. 
 
To use this version of Partition in the Selection algorithm, we need to modify the 
selection algorithm a bit since we are not splitting into <p, p, and >p.  Here is the 
modified algorithm which is listed in the book: 
 
Select(A,p,r,i) 
 If p=r return A[p] 
 Q " Partition(A,p,r) 
 K " Q –p + 1 
 If i<=K return(Select(A,p,Q,i) 
 else return(Select(A,q+1,r,i-K) 
 
Worst case running time of selection: Pick min or max as partition element, producing 
region of size n-1. 
 
 T n T n n( ) ( ) ( )= − +1 Θ  



  subprob      time to split 
 
 
Evaluate recurrence by iterative method: 
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Recursion tree for worst case: 

 
 
Best-case Partitioning: 
 
In the best case, we pick the median each time. 
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Using the master method: a=1, b=2, f(n)=Θ( )n   
Case 3: Is f n n b a( ) ( )log= +Ω ε ? 
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 YES if epsilon between 0 and 1, say 0.5 
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So T n f n n( ) ( ( )) ( )= =Θ Θ  
 
Recursion Tree for Best Case: 

 
 
Average Case:  Can think of the average case as alternating between good splits where n 
is split in half, and bad splits, where a min or max is selected as the split point. 
 
Recursion tree for bad/good split, good split: 
 

Both are Θ( )n , with just a larger constant in the event of the bad/good split.   
So average case still runs in timeΘ( )n . 
 
 
We can solve this problem in worst-case linear time, but it is trickier.  In practice, the 
overhead of this method makes it not useful in practice, compared to the previous 
method.  However, it has interesting theoretical implications. 
 
Basic idea:  Find a partition element guaranteed to make a good split.  We must find this 
partition element quickly to ensureΘ( )n  time.   The idea is to find the median of a 
sample of medians, and use that as the partition element. 
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New partition selection algorithm: 
 
•  Arrange the n elements into n/5 groups of 5 elements each, ignoring the at most four 

extra elements.   (Constant time to compute bucket, linear time to put into bucket) 
•  Find the median of each group.  This gives a list M of n/5 medians.  (time Θ( )n  if we 

use the same median selection algorithm as this one or hard-code it) 
•  Find the median of M.  Return this as the partition element.  (Call partition selection 

recursively using M as the input set) 
 
See picture of median of medians: 

 
 
 
Guarantees that at least 30% of n will be larger than pivot point p, and can be eliminated 
each time!   
 

Runtime:  T n T
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T
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   select      recurse     overhead of split/select 
   pivot    subprob 
 
The O(n) time will dominate the computation by far resulting in O(n) run time. 
 

x



Quicksort 
 
We can also use the Partition selection algorithm to do sorting, this is called Quicksort. 
 
QuickSort(A,p,r)   ; Sort A[p..r] 
 if p<r 
 then 

q ←  Partition(A,p,r) 
QuickSort(A,p,q) 
QuickSort(A,q+1,r) 

   
Show tree for sorting example of A=[5 3 2 6 4 1 3 7], use first element as partition: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Now do an in-order tree-traversal and we get the list in sorted order. 
What’s going on if we do this in-place in the array: 
 

A=[5 3 2 6 4 1 3 7]
Partition on 5 

A=[3 3 2 1 4]
Partition on 3

A=[6 5 7]
Partition on 6

A=[1 2 3 3]
Partition on 1

A=[4]
Partition on 4

A=[1]
Partition on 1

A=[2 3 3]
Partition on 2

A=[2]
Partition on 2

A=[3 3]
Partition on 3

A=[3]
Partition on 3

A=[3]
Partition on 3

A=[5]
Partition on 5

A=[6 7]
Partition on 6

A=[6]
Partition on 6

A=[7]
Partition on 7



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We end up with the sorted array at the end of the recursive steps, following the tree from 
left-to-right (inorder). 
 
All work is done in Partition. 
Worst case runtime: T n T n n( ) ( ) ( )= − +1 Θ   which we know is Θ( )n2  

Best case runtime: T n T
n

n( ) ( ) ( )= +2
2

Θ  which is the same as Merge Sort 

we know is Θ( lg )n n  
 
Average case: Same argument as before, alternating good and bad splits.  Results in same 
as the best case runtime but with larger constants than the best case, Θ( lg )n n . 
 
Even though Quick Sort has the same average case runtime than Merge Sort (Θ( lg )n n ), 
usually Quick Sort has smaller runtime constants than Merge sort, resulting in an overall 
faster execution time. 
 
What if we ran the median of median strategy to find partition point?  Still would get 
Θ( lg )n n .  Random strategy usually best, pick a small # of random elements, and use 
median of those elements as the partition point.   
 

QS(A,1,8): A=[5 3 2 6 4 1 3 7]
Partition on 5 : A=[3 3 2 1 4 6 5 7]

QS(A,1,5)
Partition on 3: A=[1 2 3 3 4 6 5 7]

QS(A,6,8)
Partition on 6: A=[1 2 3 3 4 5 6 7]

QS(A,1,4)
Partition on 1:
A=[1 2 3 3 4 6 5 7]

QS(A,5,5)
Terminates

QS(A,1,1)
Terminates

QS(A,2,4)
Partition on 2: A=[1 2 3 3 4 6 5 7]

QS(A,2,2)
Terminates

QS(A,3,4)
Partition on 3: A=[1 2 3 3 4 6 5 7]

QS(A,3,3)
Terminates

QS(A,3,3)
Terminates

QS(A,6,6)
Terminates

QS(A,7,8)
Partition on 6
A=[1 2 3 3 4 5 6 7]

QS(A,7,7)
Terminates

QS(A,8,8)
Terminates


