
Homework #7

Due Friday, April 22, before class

We’ll go over solutions in class on Monday April 25

Points Total: 57

1) (4 points) Bipartite Graphs

Describe an efficient algorithm that determines whether or not a given graph is

bipartite. A bipartite graph is a graph whose vertices can be divided into two disjoint

sets U and V such that every edge connects a vertex in U and one in V; that is, there

is no edge between two vertices in the same set. An example is shown below.

2) (6 points) Dinner Seating

Four families are planning a big dinner party. In order to stimulate discussions between

families they want to set up the seating arrangements so that no two family members are

sitting at the same table.

Family i has Fi family members. For example, Family 1 has F1 family members, where

F1 is some constant.

There are five tables, T1 to T5. Table T1 seats N1 people, table T2 seats N2 people, etc.

Show how this problem can be reduced to a max-flow problem and solved in order to

find a seating arrangement that meets the requirements and finds the maximum number

of family members that may attend (and determines where they should sit).

http://upload.wikimedia.org/wikipedia/commons/e/e8/Simple-bipartite-graph.svg

3) (6 points) Edmonds-Karp Algorithm

In class we found the maximum flow of the following graph:

We used the format below to illustrate the residual graphs, the augmenting path, and the

resulting flow network, where the left side is the residual network with the augmenting

path and the right side is the resulting flow network:

Use the same format to show the residual network at each stage if the

Use the same format to show the residual network at each stage if the Edmonds-Karp

algorithm is used to find the augmenting path, where Edmonds-Karp uses the augmenting

path that is the shortest path (in terms of number of edges) from s to t.

4) (6 points) Variation of Prim’s Algorithm

Suppose that all edge weights in a graph are integers in the range from 1 to W, where W

is a constant. Prim’s algorithm relies on a queue. This queue holds key values ranging

from 0 to W with a special case of infinity. If we encode infinity as W+1, then consider

implementing the queue as a simple array, Q, defined from Q[0] to Q[W+1].

The data stored in Q[i] is a doubly-linked list of vertices that have i as the value for their

key, similar to the idea in count sort. For example, Prim’s algorithm initializes the key

of every vertex to infinity except the start vertex which is initialized to zero. This would

result in Q[0] containing the list containing the start vertex only. Q[W+1] would contain

the list of all other vertices since W+1 represents infinity.

Here is Prim's algorithm again:

 MST-Prim(G,w,r) ; Graph G, weights w, root r

 Q«V[G]

 for each vertex u QÍ do key[u] « ¤ ; infinite “distance”

 key[r] «0

 P[r] «NIL

 while Q ̧ NIL do

 u«Extract-Min(Q) ; remove closest node

 ; Update children of u so they have a parent and a min key val

 ; the key is the weight between node and parent

 for each vÍAdj[u] do

 if vÍQ && w(u,v) < key[v] then

 P[v] «u

 key[v] «w(u,v)

a. How could we implement the EXTRACT-MIN(Q) portion of Prim's algorithm

using this array data structure?

b. How could we implement the KEY[V] ă W(U,V) portion of Prim’s algorithm

using this array data structure? You can assume that we start with a pointer to V

where it exists in Q, i.e. you don't have to search through Q to find the V we

would like to change.

c. What is the overall asymptotic runtime in this scenario?

5) (12 points) Dynamic Programming – Jump It Game

The game of “Jump It” consists of a board of two rows of n numbers. The top row can

contain any positive integer. The bottom row can contain only the numbers 1-3. Here is

a sample game board where n is 6:

10 3 87 58 57 10

1 2 3 1 1 1

The object of the game is to jump from the first column to the last column in the lowest

total cost. The top number of a column is the cost to visit that column. The bottom

number is the maximum number of columns one is allowed to jump to the right from that

column. The cost of a game is the sum of the costs of the visited columns.

In the board above, there are several ways to get to the end. Starting in the first column,

our cost so far is 10. We have only one option, to move to the second column. When we

enter column two, our cost is now 13. In the second column, we can either jump one or

two columns to the right. If we decide to jump two columns, we skip column three and

move to column four and our total cost is 71 (10+3+58). In column four and five we can

only move one column to the right, for a total cost of 138 when we end up in column 6.

However, in the second column, we could have jumped only one column instead of two

columns, bringing us to column 3 and a total cost of 100. In column 3 we can jump three

spaces to the right, bringing us all the way to the end in a lower cost of 110.

a) Write a recursive solution to this problem that computes the cheapest cost of the

game. This solution should not use dynamic programming. Implement the game in any

programming language of your choice and test it on some small sample boards to ensure

that your solution works. Then test it on randomly generated boards where the cost is a

random number between 1-100 and the jump is a random number from 1-3. Test your

solution on random boards of size 10, 30, and 50, noting the length of time that your

solution takes (if your solution is fast, feel free to use larger board sizes).

To turn in:

¶ Give pseudocode and an analysis of the runtime of your algorithm.

¶ Turn in the code (any language) for your recursive solution to Blackboard

(problem continues on next page)

b) Write a solution using dynamic programming. Implement the game and test it on the

small sample boards and also on randomly generated boards of the same size, noting the

length of time that your solution takes.

To turn in:

¶ Give pseudocode and an analysis of the runtime of your algorithm.

¶ Turn in the code for your dynamic programming solution

6) (9 points) Calculating Change

Consider the problem of making change for n cents using the fewest number of coins.

Assume that each coin’s value is an integer and the cashier giving change has an

unlimited number of coins of each denomination.

a) Describe a greedy algorithm to make change consisting of quarters dimes, nickels, and

pennies. Argue that your algorithm yields an optimal solution.

b) Give a set of coin denominations for which the greedy algorithm does not yield an

optimal solution. Your set should include a penny so that there is a solution for every

value of n.

c) Design a dynamic programming algorithm for the change-making problem.

7) (6 points) The Knapsack problem

In class we went over a solution to the knapsack problem. Given n items, each with

values vi and weights wi where i ranges from 1 to n, and a knapsack capable of supporting

weight W, the task was to find the largest valued subset that fits in the knapsack.

We defined best[i,k] to be the maximum value that a knapsack capable of supporting

weight k can hold, using items 0 through i sorted by increasing weight.

Now, consider a slightly different problem, the infinite item knapsack problem. In this

problem, there are n types of items, and an infinite number of items of each type

available. More realistically, this problem would be similar to entering a grocery store

with an ample supply of every item. For example, there may only be 3 types of items

(n=3) but we are free to select as many items of type 1, 2, or 3 that we want as long as

they fit within the knapsack. Items of type i have weight wi and value vi. Once again, the

knapsack supports a total weight W and we want to pick the subset of items with the

highest value. This would be like a shopping spree where the store has an infinite

number of each item.

a) Describe how the dynamic programming formulation for best[i,k] can be modified to

solve the infinite item knapsack problem. Hint: There is very little that needs to be

changed from the original formulation.

b) Our dynamic programming solution solves the knapsack problem in time O(Wn). But

we also said that this problem is NP-Complete. Does this solution mean that we have

found a polynomial time solution to an NP-Complete problem, and therefore P = NP? If

not, explain why not.

8) (8 points) Horspool and Boyer Moore Algorithms for String Matching

 For the following pattern and text:

 P = abab a

 T = a babz abababa ababab

Illustrate how Horspool and Boyer Moore’s algorithms will operate on this data. For

example, we could illustrate the brute force algorithm on the data in the example below.

Here, comparisons are made from left to right starting at the first character in the pattern

and the capital letter indicates where a mismatch was made and the comparison stops,

shifting the pattern over by one.

 T: ababzabababaaba bab

 P: 1 abab A mismatch at last A , stop, shift P by 1

 2 Ababa mismatch at first A

 3 abAba mismatch at second A

 4 Ababa

 5 Ababa

 6 ababa MATCH

 7 Ababa

 8 ababa MATCH

 10 Ababa

 11 abaBa

 12 Ababa

 13 aBaba

 14 ababa MATCH

 15 Ababa

Note: In both Horspool and Boyer Moore you can simply shift the pattern over by one

character after a complete match is found.

9) Extra Credit Problem (Worth an additional 10 points) Anagrams

a) Describe a brute force algorithm for finding all sets of anagrams in a large file

such as a dictionary of English words. For example, "eat", "ate", and "tea"

belongs to one such set. Determine the runtime efficiency of the algorithm.

b) Describe an expected O(nlgn) algorithm that is more efficient than brute force.

Determine the runtime efficiency of the algorithm as closely as you can (it may

not be possible to give an exact runtime, since the approach could depend on what

words are in the file).

10) Double Bonus Extra Credit Program, worth 12 extra points on this assignment

Your program must work perfectly to get the credit and you must adequately

describe how your algorithm works.

Your company has developed a new type of explosive called algorimite. Stored in units

of cubes, algorimite has the unique property that it is harmless when two or fewer cubes

are placed together. A spark or flame will produce only a harmless fizzle. However,

when three or more cubes are placed together, the slightest spark will ignite a massive

explosion many times larger than the equivalent amount of TNT.

To prevent the potential for catastrophe in storing algorimite, scientists at your company

have set up guidelines for the storage of the compound. Each algorimite cube is marked

"A". It must be stored in a single stack of cubes. In between each algorimite cube is to

be placed a plastic cube marked "P". This will prevent any two algorimite cubes from

being placed together, a safe buffer from the potential deadly combination of three

algorimite cubes on top of each other.

Unfortunately, one of your workers had a little too much to drink for lunch and has

forgotten the safety rules. He begins to stack A and P cubes randomly on top of each

other. To make matters worse, he is a chain smoker and can't resist lighting up a cigarette

while working.

Calculate the number of possible combinations for a potential explosion as the size of his

stack grows from 3 to 30. For example, say the stack is of size 3. There is one way for

the stack to become deadly --if all three cubes are algorimite.

1: AAA (top of the stack is toward the right)

However, if the size of the stack is 4, then there are three ways the worker may blow

himself up:

1: AAAP

2: PAAA

3: AAAA

Devise a dynamic programming solution to this problem. Turn in:

¶ A description of how your dynamic programming algorithm works. Guessing at a

dynamic programming solution without understanding how it works is not

sufficient for getting credit!

¶ Code for your program, which should output the number of potentially deadly

combinations for stacks of size 3, 4, 5, up to size 30. Your program needs to

output the number of combinations only, not the actual combinations (i.e. it

should output 1 for stack of 3, output 3 for stack of 4, output 8 for stack of 5, etc.)

You can use any programming language for this problem.

