
CS351 
Pumping Lemma, Chomsky Normal Form 
 
Chomsky Normal Form 
 
When working with a context-free grammar a simple and useful form is called the 
Chomsky Normal Form (CNF).  A CFG in CNF is one where every rule is of the form: 
 
 A ! BC 
 A ! a 
 
Where a is any terminal and A,B, and C are any variables, except that B and C may not 
be the start variable.  Note that we have two and only two variables on the right hand side 
of the rule, with the exception that the rule S!ε is permitted where S is the start variable. 
 
Theorem: Any context free language may be generated by a context-free grammar in 
Chomsky normal form.   
 
To show how to make this conversion, we will need to do three things: 
1. Eliminate all ε rules of the form A!ε 
2. Eliminate all unit rules of the form A!B 
3. Convert remaining rules into rules of the form A!BC 

 
Proof: 
 
1. First add a new start symbol S0 and the rule S0 ! S,  where S was the original 

start symbol.   This guarantees that the start symbol doesn�t occur on the right 
hand side of a rule. 

 
2. Remove all ε rules.   Remove a rule A!ε where A is not the start symbol    For 

each occurrence of A on the right-hand side of a rule, add a new rule with that 
occurrence of A deleted.  Ex: 

 
R!uAv becomes R!uv 

 
 This must be done for each occurrence of A, so the rule: 
 
  R!uAvAw becomes R! uvAw    and  R! uAvw   and  R!uvw 
 
 This step must be repeated until all ε rules are removed, not including the start. 
 

3. Remove all unit rules.  A unit rule is of the form A!B.  Whenever a rule B!u 
appears, add the rule A!u.   u may be a string of variables and terminals.  Repeat 
this step until all unit rules are eliminated. 

 
 



4. Convert all remaining rules into the proper form with two variables on the right.   
 

Rules of the form:   A! u1u2�uk where k ≥ 3 each ui is a variable or terminal 
symbol.  This rule is replaced with: 
 
 A ! u1A1 
 A1 ! u2A2 
 � 
 Ak-2 ! uk-1uk 
 
The Ai�s are new variables.  The above applies to variables or terminals, so we 
might turn a terminal into a rule.  In fact if there is a terminal combined with a 
rule we must turn it into a variable, since CNF doesn�t allow a mixture of 
variables and terminals on the right.  

 
At the end of this process we have a grammar in Chomsky Normal Form! 
 
Example:  Convert the following grammar into CNF: 
 
 S ! ASA | aB 
 A ! B | S 
 B ! b | ε 
 
First add a new start symbol, S0 : 
 
 S0 ! S 
 S ! ASA | aB 
 A ! B | S 
 B ! b | ε 
 
Next remove the ε transition from rule B: 
 
 S0 ! S 
 S ! ASA | aB | a 
 A ! B | S | ε 
 B ! b 
 
We must do this again for rule A: 
 
 S0 ! S 
 S ! ASA | aB | a | AS | SA | S 
 A ! B | S 
 B ! b 
 
 
 



Now we remove unit rules, starting with S0 ! S and S ! S can also be removed 
 
 S0 ! ASA | aB | a | AS | SA 
 S ! ASA | aB | a | AS | SA  
 A ! B | S 
 B ! b 
 
Next remove the rule for A!B 
 
 S0 ! ASA | aB | a | AS | SA 
 S ! ASA | aB | a | AS | SA  
 A ! S | b 
 B ! b 
 
Next remove the rule for A!S 
 
 S0 ! ASA | aB | a | AS | SA 
 S ! ASA | aB | a | AS | SA  
 A ! b | ASA | aB | a | AS | SA 
 B ! b 
 
Finally we convert the remaining rules into the proper form by adding variables and rules 
where we have more than three things on the right hand side: 
 
 S0 ! AA1 | A2B | a | AS | SA 
 A1 ! SA 
 A2 ! a 
 S ! AA1 | A2B | a | AS | SA 
 A ! b | AA1 | A2B | a | AS | SA 
 B ! b 
 
 
CNF and Parse Trees 
 
Chomsky Normal form is useful when we interpret the grammar as a parse tree.  This is 
because the parse tree of a CNF grammar forms a  binary tree.  For example, consider the 
example grammar we went through previously for the string:  babaaa 
 
 S0 ! AS ! bS ! bAS ! bASS ! baSS ! baASS ! babSS ! babSAS  

! babaAS ! babaaS ! babaaa 
 



 
 
 
The fact that the Chomsky Normal Form grammar forms a binary parse tree lets us apply 
all sorts of useful things we already know about binary trees to the grammar.   
 
Suppose that we have a parse tree for a CNF grammar and that the yield of the tree is a 
terminal string w.  If the height/length of the longest path in the tree is n, then |w| ≤ 2n-1

.   
 
Consider a path of length 1.  This consists of a tree with a root node and a single leaf with 
a terminal.  In this case |w| = 1, and the height is 1, so we have 21-1 = 20 = 1. 
 
Now consider the case where the longest path has length n, where n > 1.  The root uses a 
production that must be of the form A ! BC; i.e. we can�t have a terminal hanging off 
the root.   
 
By induction, the subtrees from B and C both have yields of length at most 2n-2 since we 
have already used an edge from the root to these subtrees.  The yield of the entire tree is 
the concatenation of these two yields, which is 2n-2

 + 2n-2 which equals 2*2n-2 = 2n-2+1 = 
2n-1. 
 
The Pumping Lemma for Context Free Languages 
 
The previous result, that the yield of a CFG in CNF has length ≤ 2n-1 lets us define the 
pumping lemma for context free languages. 
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The pumping lemma for context free languages gives us a technique to show that certain 
languages are not context-free.  It is similar to the pumping lemma for regular languages, 
but a bit more complex.  Essentially, the pumping lemma states that for sufficiently long 
strings in a CFL, we can find two, short, nearby substrings that we can �pump� in 
tandem.  The pumped strings must also be in the language if it is a context-free language. 
 
The pumping lemma states: 
 
Let L be a CFL.  Then there exists a constant n such that if z is any string in L where  
|z| ≥ n, then we can write z = uvwxy subject to the following conditions: 
 
1. |vwx| ≤ n.   This says the middle portion is not larger than n. 
2. vx ≠ ε.  We�ll pump v and x.  One may be empty, but both may not be empty. 
3. For all i ≥ 0, uviwxiy is also in L.   That is, we pump both v and x. 

 
Here is an argument as to why the pumping lemma is true.   
 
First, given any CFG, we can convert it to CNF, G.   For this grammar, we can construct 
a parse tree for any given string in the language.  This grammar creates a binary tree. 
 
Let G have m variables.  Choose this as the value for the longest path in the tree. The 
constant n can then be selected where n = 2m.  We showed previously that a string in L of 
length m or less must have a yield of 2m-1 or less.   Since n = 2m,  then 2m-1 ≤ n/2.   Given 
a string z = uvwxy where |z| ≥ n, this means that z is too long to be yielded from such a 
parse tree.   Any parse tree that yields z must have a path of length at least m+1.  This is 
shown in the following figure: 
 
 
 
 
 
 
 

 

 

 

 

 

 
In this figure, we have variables A0, A1, � to Ak.  If k ≥ m, where m is the number of 
variables in G, then it means that we must have at least m+1 occurrences of variables on 
the path from A0 to Ak.  This also means that at least two of the variables must be the 
same variable, since we only have m unique variables available.   Suppose that the two 
variables that are the same are Ai = Aj where k-m ≤ i < j ≤ k. 
 
It is now possible to divide the tree as follows: 
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Here, z = uvwxyz and the strings are split up as shown above.  The parse tree rooted at Ai 
is given by vwx.   The parse tree rooted at Aj is given by just w.  Strings u and v are the 
parts to the left and right of the entire tree.    It is important to know that in this picture Ai 
is the same variable as Aj although we may follow different production rules for each one. 
 
Condition 2 of the pumping lemma stated that vx ≠ ε.  We can show this by noting that 
we must apply a production rule to go from Ai to Aj.  But for a grammar in CNF, there 
are no unit productions and no ε productions.  This means that a subtree must consist of 
either a single terminal or at least two variables.   The subtree at Ai can�t be a terminal 
since we have the subtree of Aj below it.  Therefore we must have two variables.  One of 
these must lead to Aj and the other must lead to either v or x, or the two variables lead to 
both.  This means that both v and x cannot be empty, although one might be empty. 
 
Condition 1 of the pumping lemma stated that |vwx| ≤ n.  This says the yield of the 
subtree at Ai is ≤ n.  But we picked this tree so that the longest path was m+1.  The yield 
of a tree with path m+1 is 2m+1-1 = 2m which equals n based on our construction. 
 
Condition 3 of the pumping lemma stated that for all i ≥ 0, uviwxiy is also in L.  We can 
show this by noting that Ai=Aj.  This means we can substitute one for the other.  If we 
substitute Aj for Ai then we end up with the following picture: 
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The above yield must be in the language.  Similarly we could substitute Ai for Aj: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The first diagram is the case of uv0wx0y. 
The original case is for z = uv1wx1y. 
The second diagram is the case of uv2wx2y.  
 
We could repeat the process again, giving us the general case that: 
 

uviwxiy  must be in L, where i ≥ 0. 
 
We have now shown all three conditions of the pumping lemma for context free 
languages.  To show a language is not context free, we can treat this as an adversarial 
game: 
 
1. We pick a language L to show that it is not a CFL 
2. Our adversary picks n, some arbitrary number indicating the maximum yield and 

length of the parse tree 
3. We pick z, and may use n as a parameter 
4. Our adversary gets to break z into uvwxy subject to the constraints that |vwx| ≤ n 

and |vx| ≠ε 
5. We �win� by picking i and showing that uviwxiy is not in L, therefore L is not 

context free. 
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Example:  Let L be the language { 0n1n2n | n ≥ 1 }.  Show that this language is not a CFL. 
 
Suppose that L is a CFL. Then the adversary picks an integer n and we pick z = 0n1n2n. 
Since z=uvwxy and |vwx| ≤ n, we know that the string vwx must consist of either: 

•  all zeros 
•  all ones 
•  all twos 
•  a combination of 0�s and 1�s  
•  a combination of 1�s and 2�s 

The string vwx cannot contain 0�s, 1�s, and 2�s because the string is not large enough to 
span all three symbols. 
 
We can now �pump down� where i=0.  This results in the string uwy and can no longer 
contain an equal number of 0�s, 1�s, and 2�s because the strings v and x contains at most 
two of these three symbols.   Therefore the result is not in L and therefore L is not a CFL. 
 
 
Example:  Let L be the language { aibjck | 0 ≤ i ≤ j ≤ k }.  Show that this language is not a 
CFL. 
 
This language is similar to the previous one, except proving that it is not context free 
requires the examination of more cases.  We suppose that L is a CFL.  Pick z = anbncn as 
we did with the previous language.  As before, the string vwx cannot contain a�s, b�s, and 
c�s.  We then pump the string depending on the string vwx as follows: 

•  There are no a�s.   Then we try pumping down to obtain the string uv0wx0y to get 
uwy.  This string contains the same number of a�s, but fewer b�c or c�s.  Therefore 
it is not in L. 

•  There are no b�s but there are a�s.  Then we pump up to obtain the string uv2wx2y 
to give us more a�s than b�s and this is not in L. 

•  There are no b�s but there are c�s.  Then we pump down to obtain the string uwy.  
This string contains the same number of b�s but fewer c�s, therefore this is not in 
C. 

•  There are no c�s.  Then we pump up to obtain the string uv2wx2y to give us more 
b�s or more a�s than there are c�s, so this is not in C. 

Since we can come up with a contradiction for any case, this language is not a CFL 
language. 
 
 
Example:  Let L be the language {ww | w ∈  {0,1}*}.  Show that this language is not a 
CFL. 
 
As before, assume that L is context-free and let n be the pumping length.  This time 
choosing the string z is less obvious. One possibility is the string:  0n10n1.  It is in L and 
has length greater than n, so it appears to be a good candidate.  But this string can be 
pumped as follows so it is not adequate for our purposes: 
 



 
 
 
 
 
 
 
 
We need to pick another string.  This time lets try z=0n1n0n1n instead.  We can show that 
this string cannot be pumped.   
 
We know that |vwx| ≤ n.  Let�s say that the string |vwx| consists of the first n 0�s. If so, 
then if we pump this string to uv2wx2y then we�ll have introduced more 0�s in the first 
half and this is not in L.  We get a similar result if |vwx| consists of all 0�s or all 1�s in 
either the first or second half. 
 
If the string |vwx| matches some sequence of 0�s and 1�s in the first half of z, then if we 
pump this string to uv2wx2y then we will have introduced more 1�s on the left that move 
into the second half, so it cannot be of the form ww and be in L.  Similarly, if |vwx| 
occurs in the second half of z, them pumping z to uv2wx2y moves a 0 into the last 
position of the first half, so it cannot be of the form ww either. 
 
This only leaves the possibility that |vwx| somehow straddles the midpoint of z.  But if 
this is the case, we can now try pumping the string down.  uv0wx0y  = uwy has the form 
of 0n1i0j1n where i and j cannot both equal n.  This string is not of the form ww and 
therefore the string cannot be pumped and L is therefore not a CFL. 
 
 
Closure Properties of Context-Free Languages 
 
The closure properties of CFL�s are similar to the closure properties of Regular 
languages.  Operations under closure result in a language that is also a context-free 
language. We will touch upon the major closure properties without detailed proofs; see 
the text for additional details. 
 
Closure Under Substitution 
 
Theorem:  If a substitution s assigns a CFL to every symbol in the alphabet of a CFL L, 
then s(L) is a CFL, where s(L) is the concatenated substitution for all symbols for all 
words in the language L. 
 
Proof: 

•  Take a grammar for L and a grammar for each language La = s(a). 
•  Make sure all the variables of all these grammars are different. 

We can always rename variables whatever we like, so this step is easy. 
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•  Replace each terminal a in the productions for L by Sa, the start symbol of the 
grammar for La. 

Intuition: this replacement allows any string in La to take the place of any occurrence of a 
in any string of L. 
 
Example: 
 
L = {0n1n | n ≥ 1 }  generated by the grammar  S! 0S1 | 01 
s(0) = {anbm | n ≥ m };  generated by the grammar  

S! aSb | A 
A! aA | ab 

s(1) = {ab, abc}; generated by the grammar 
 S!abA 
 A!c | ε 
 
Rename the second and third S�s to Sa and S1 respectively, and second A to B: 
 S ! 0S1 | 01 
 Sa! aSab | A 
 A ! aA | ab 
 S1! abB 
 B ! c | ε 
 
In the first grammar, replace 0 by Sa and 1 by S1.  The combined grammar becomes: 
 S ! SaSS1 | SaS1 
 Sa! aSab | A 
 A ! aA | ab 
 S1! abB 
 B ! c | ε 
The new grammar is the substitution of s(0) and s(1).  Since we can make a context-free 
grammar for it, the resulting language is obviously a CFL. 
 
Applications of Substitution 
 
Based on substitution, we can show a few other operations are closed for CFL�s: 
 
1. Union:  Let L1 and L2 be CFL�s.  Then L1 ∪ L2 is also a CFL.  We can make 

L1 ∪ L2 the language s(L), where L={1,2} and s is the substitution defined by 
s(1)=L1 and s(2)=L2. 

 
2. Concatenation:  Let L1 and L2 be CFL�s.  Then L1L2 is the language s(L), where 

L is the language {12} and s is the substitution defined by s(1)=L1 and s(2)=L2. 
 

3. Closure:  Let L1 be a CFL.  Let L be the language {1}* and s is the substitution 
s(1)=L1, then L1* = s(L).  

 
4. Homomorphism:  This is just a simpler case of substitution. 



 
Unlike regular languages, CFL�s are not closed with intersection.  Here is a simple 
example that illustrates this: 
 
We learned that L = {0n1n2n | n ≥ 1}  is not a CFL based on the pumping lemma. 
 
However, the following two languages are context-free: 
 
 L1 = {0n1n2i | n ≥ 1, i ≥ 1} 
 L2 = {0i1n2n | n ≥ 1, i ≥ 1} 
 
We can show this by constructing the grammars: 
 
For L1: 
 S ! AB 
 A ! 0A1 | 01 
 B ! 2B | 2 
For L2: 
 S ! AB 
 A ! 0A | 0 
 B ! 1B2 | 12 
 
However, the intersection, L1 ∩ L2 is the case where i=n.  This results in language L, 
above, which we showed was not a context-free language.  Therefore, CFL�s are not 
closed under intersection. 
 
 



Decision Properties of CFL�s 
 
Now let�s consider common questions we can answer about CFL�s. 
 
Testing Emptiness of a CFL:   As for regular languages, we really take a representation of 
some language and ask whether it represents ∅ . 
 

•  In this case, the representation can be a CFG or PDA. 
It is our choice, since there are algorithms to convert one to the other. 

•  The test: Use a CFG; check if the start symbol is useless (as done with converting 
to CNF) 

 
The book has lots of information about the time required to perform such calculations 
(can be done in O(n) time, where n is the number or production rules) 
 
Testing Membership in a CFL:  Given a string s, is s in a context-free language L? 
 
The first thought to answer this question might be to simulate a PDA for L on string w.  
However, this doesn't quite work in all cases, because the PDA can grow its stack index 
indefinitely on ε input, and we never finish.  We might finish, but we might be stuck 
following a bunch of ε transitions. 
 
A simple, brute-force way to test membership is to convert L to Chomsky-Normal Form 
and create the binary parse tree.  For string s of length n, we showed that the tree has up 
to 2n terminals so in principle we could check all of these to see if any of them yields s. 
Obviously this solution is exponential in the size of n. 
 
There exists a dynamic programming solution, CYK (Cocke-Younger-Kasami) that runs 
in time O(n3).   In this solution, we start by filling in a 2-d table corresponding to 
substrings of length 1, then use those solutions to see what substrings are possible of 
length 2, and then work our way up to substrings of length n. 
 
We won�t cover the details of the CYK algorithm here (but you might see it or something 
similar in the Algorithms material of the class�) 
 
 


