
CS351 
Context Free Grammars 
 
As we have shown previously with the pumping lemma, there are several languages that 
we can describe that are not regular.  There are several classes of languages larger than 
that of regular languages.  One of these are the �context-free� languages.  These 
languages can be described by context-free grammars (CFG).  The name context-free 
comes from the property that we will be able to substitute strings for variables regardless 
of the context (there is a more powerful class of grammars called context-sensitive that 
we�ll see briefly later). 
 
Context-free grammars are useful in many applications today that require parsing.  
Examples of parsing and the application of CFG�s include natural language processing, 
creating compilers that recognize a computer program, or defining the structure of web 
documents via DTD�s and XML. 
 
The context-free grammar is somewhat like the regular expression is for regular 
languages.  Just as we could build a DFA for a regular expression, we�ll see that we can 
build a machine that is equivalent to the context-free grammar.  This machine is called 
the pushdown automaton. 
 
Context Free Grammar Example 
 
One example of a context free grammar is the language of palindromes.  We can easily 
show using the pumping lemma that the language L = { w | w = wR } is not regular.  
However, we can describe this language by the following context-free grammar over the 
alphabet {0,1}: 
 
 P ! ε 
 P ! 0 
 P ! 1 
 P ! 0P0 
 P ! 1P1 
 
In this grammar, P specifies the palindrome that we can create inductively.  As the basis 
we can have palindromes of empty, 0, or 1.  Then based on something that is already a 
palindrome, we can construct a larger palindrome by surrounding it by 0�s or 1�s.   
 
Sometimes this grammar is written more compactly as: 
 
 P ! ε | 0 | 1 | 0P0 | 1P1 
 
That is, we combine all the productions for a single variable together. 
 
 
 



Definition of CFG’s 
 
Formally, a CFG is described as: 
 

1. There is a finite set of symbols that form the strings, e.g. there is a finite alphabet.  
In the lingo of context-free grammars, the alphabet symbols are called terminals 
because when we create the parse tree, the symbols will end up at the leaves of 
the tree and terminate any branches. 

2. There is a finite set of variables, sometimes called non-terminals or syntactic 
categories.  Each variable represents a language (i.e. a set of strings).  In the 
palindrome example, the only variable is P. 

3. One of the variables is the start symbol.  Other variables may exist to help define 
the language. 

4. There is a finite set of productions or production rules that represent the 
recursive definition of the language.  Each production is defined: 

a. Has a single variable that is being defined to the left of the production 
b. Has the production symbol ! 
c. Has a string of zero or more terminals or variables, called the body of the 

production.   To form strings we can substitute each variable�s production 
in for the body where it appears. 

 
A CFG G may then be represented by these four components, denoted G=(V,T,P,S) 
where V is the set of variables, T is the set of terminals, P is the set of productions, and S 
is the start symbol. 
 
Example CFG 
 
Consider a typical programming language where we want to define what an arithmetic 
expression is.  We can do this through a CFG.  Here is a subset of what might go into a 
CFG grammar for representing arithmetic expressions and identifiers: 
 

1. E!I    // Expression is an identifier 
2. E!E+E   //  Add two expressions 
3. E!E*E   //  Multiply two expressions 
4. E!(E)    //  Add parenthesis 
5. I! L    // Identifier is a Letter 
6. I! ID    //  Identifier + Digit 
7. I! IL    //  Identifier + Letter 
8. D ! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9  // Digits 
9. L !  a | b | c | � A | B | � Z   // Letters 

 
Note that identifiers here are actually regular.  An identifier could be described as: 
(letter)(letter + digit)*  .   That is, we must start an identifier with a letter and then can 
follow that by any sequence of letters and digits. 
 



Production 1 is the basis rule that says an expression is an identifier.  Productions 2-4 
inductively build bigger expressions from the basis.  
 
Production 5 is the basis for an identifier.  Productions 6-7 then inductively create larger 
identifier.  
 
Productions 8-9 define the terminals of this problem.  We have letters defined by 
production 8, and digits defined by production 9.  
 
Recursive Inference and Derivations 
 
The process of coming up with strings that satisfy individual productions and then 
concatenating them together according to more general rules is called recursive inference.  
For example, using Rule 8 let�s say that we know D ! 5 and using Rule 9 we know that 
L=r.  From rule 5, I!L, we have that r is an identifier. We can then apply recursive 
inference using rule 6 for I!ID and get that I ! rD.  We can use the D of 5 to get I!r5.  
Finally, we know from rule 1 that E!I, so r5 is also an expression. 
 
Exercise: Show the recursive inference for arriving at (x+int1)*10 is an expression. 
 
 
 
 
 
With recursive inference we are able to show that the resulting string we get after 
processing the rules leads us to a new string that is also in the language.   Another 
approach is to use the productions from head to body by expanding the start symbol first 
and working our way down.  This process is called derivation. 
 
For example, given :  a*(a+b1) we can derive this by: 
 
E ⇒ E*E ⇒ I*E ⇒ L*E ⇒ a*E ⇒ a*(E) ⇒ a*(E+E) ⇒ a*(I+E) ⇒ a*(L+E) ⇒ a*(a+E) 
⇒ a*(a+I) ⇒  a*(a+ID) ⇒ a*(a+LD) ⇒ a*(a+bD) ⇒ a*(a+b1) 
 
Note that at each step of the productions we could have chosen any one of the variables 
to replace with a more specific rule.   
 
More formally, we can describe the process of deriving strings inductively.  First we need 
to introduce some new terminology: 
 
 The process of deriving a string by applying a production from head to body is 
denoted by ⇒ .  If α and β are strings consisting of terminals and variables, and A is a 
variable, then let A!γ be a production of grammar G.  We can then  say αAβ⇒G αγβ. 
 
Often we will assume we are working with grammar G, and leave it off:  αAβ⇒ αγβ. 
 



Additionally, just as we defined δ^, the extended transition function that accepts a string, 
we can also define a similar notion for the derivation ⇒.   If we process multiple 
derivation steps, we use a * to indicate �zero or more steps� as follows inductively: 
 
Basis:  For any string α of terminals and variables, we can say α⇒* α.  That is, any string 
derives itself. 
 
Induction:  If α⇒* β and β⇒γ, then α⇒* γ.   That is, if alpha can become beta in zero or 
more steps, then we can take one more step to gamma meaning alpha derives gamma.  
The proof is straightforward. 
 
We already saw an example of ⇒ in deriving a*(a+b1). 
We could have used ⇒* to condense the derivation.  For example, we could just straight 
to E ⇒* E*(E+E) or even straight to the final step of E ⇒* a*(a+b1). 
 
Leftmost and Rightmost Derivations 
 
In the previous example we used a derivation called a leftmost derivation.  We can 
specifically denote a leftmost derivation using the subscript �lm�, as in: 
 
 ⇒lm  or  ⇒*

lm 

 
Similarly, we will also have a rightmost derivation which we can specifically denote via: 
 
 ⇒rm  or  ⇒*

rm 
 
A leftmost derivation is simply one in which we replace the leftmost variable in a 
production body by one of its production bodies first, and then work our way from left to 
right.  A rightmost derivation is one in which we replace the rightmost variable by one of 
its production bodies first, and then work our way from right to left. 
 
Example:  :  a*(a+b1)   was already shown previously using a leftmost derivation.  We 
can also come up with a rightmost derivation, but we must make replacements in 
different order: 
 
E ⇒rm E*E ⇒rm E * (E) ⇒rm E*(E+E) ⇒rm E*(E+I) ⇒rm E*(E+ID) ⇒rm E*(E+I1) ⇒rm 
E*(E+L1) ⇒rm E*(E+b1) ⇒rm E*(I+b1) ⇒rm E*(L+b1) ⇒rm E*(a+b1) ⇒rm I*(a+b1) ⇒rm 
L*(a+b1) ⇒rm a*(a+b1) 
 
Any derivation has an equivalent leftmost and rightmost derivation.  That is, A ⇒* α. iff 
A ⇒*

lm α and A ⇒*
rm α. 

 
 
 
 
 



Language of a CFG 
 
The language that is represented by a CFG G(V,T,P,S) may be denoted by L(G), is a 
Context Free Language (CFL) and consists of terminal strings that have derivations from 
the start symbol: 
 
 L(G) = { w in T | S  ⇒*

G w } 
 
 
Sentential Forms 
 
A sentential form is a special name given to derivations from the start symbol.  If we 
have a string α that consists entirely of terminals or variables, then S ⇒* α where S is the 
start symbol is a sentential form.   
 
Note that we can have leftmost or rightmost sentential forms based on which type of 
derivation we are using.  Also note that the CFL L(G) consists solely of terminals from 
G. 
 
 
Exercises:  
 
 Give a CFG for the CFL:   {0n1n | n ≥ 1 } 
 
 
 
 
 
 
 
 
 Give a CFG for the CFL:  {aibjck | i ≠ j or j ≠ k } 
 
 
 
 
 
 
 



Parse Trees 
 
A parse tree is a representation of a derivation that can be quite useful in practice.  The 
parse tree is a common data structure that is used in implementing any type of parser for 
a grammar, e.g., a compiler.  If we can generate multiple parse trees then that means that 
there is ambiguity in the language � this is often undesirable, for example, in a 
programming language we would not like the computer to interpret a line of code in a 
way different than what the programmer intends.  However, sometimes an unambiguous 
language is difficult or impossible to avoid. 
 
A parse tree for a CFG is constructed according to the following rules: 
 

1. Each interior node is labeled by a variable in V 
2. Each leaf node is labeled by a variable, terminal, or ε.  If ε, then the parent of this 

node must have no other children.  If we expand each variable, then ultimately 
leaf nodes must be terminals. 

3. If an interior node is labeled P, then the children are labeled X1X2X3�Xn where 
we have the production: 

 
P ! X1X2X3�Xn 

 
Here is a sample parse tree for the palindrome CFG for 1110111: 
 
 P ! ε | 0 | 1 | 0P0 | 1P1 
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Here is a leftmost derivation of the parse tree for a*(a+b1)   : 
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Is the rightmost parse tree any different from the leftmost parse tree? 
 
 
Later we�ll see examples of some CFG�s that have multiple leftmost parse trees � these 
will be ambiguous languages. 
 
The yield of the parse tree is the string that results when we concatenate the leaves from 
left to right (e.g., doing a leftmost depth first search).  The yield is always a string that is 
derived from the root and is guaranteed to be a string in the language L. 
 
 
 
 



Inference, Derivations, and Parse Trees 
 
So far we have used the following forms to describe the processing of context-free 
grammars to describe whether or not a string s is in the language given a CFG with start 
symbol A: 
 

1. The recursive inference procedure run on s can determine that s is in the language 
2. A ⇒* s 
3. A ⇒*

lm s 
4. A ⇒*

rm s 
5. The parse tree rooted at A contains s as its yield 

 
All of these forms are equivalent for strings consisting of terminal symbols.   
All of these forms except for #1 are equivalent for strings consisting of terminals or 
variables (this is because we only defined recursive inference for terminal symbols).  
However, derivations and parse trees are equivalent even including variables.  This 
means that if we can create a parse tree of some sort, we can create a corresponding 
derivation, either leftmost, rightmost, or mixed, that expresses the same behavior as the 
parse tree. 
 
These equivalences are proven in the textbook and we will skip them here.  Essentially 
we show the following equivalences: 
 

Recursive Inferences ! Parse Tree ! (Left | Right derivation) ! derivation ! 
Recursive Inference 

 
The loop back to recursive inferences completes the equivalence.  To go from recursive 
inferences to parse trees, we create a child/parent relationship each time we make a 
recursive inference.  The parse tree can generate a leftmost derivation by following 
leftmost children in the tree first, while the rightmost derivation examines rightmost 
children in the tree first.  Finally a derivation to recursive inference is done by showing 
that individual productions of the form A!w can be built into A⇒*w. 
 
Ambiguous Grammars 
 

� A CFG is ambiguous if one or more terminal strings have multiple leftmost 
derivations from the start symbol. 

� Equivalently: multiple rightmost derivations, or multiple parse trees. 
� Examples 

� E! E+E | E*E 
� E+E*E can be parsed as 

� E⇒E+E ⇒E+E*E 
� E ⇒E*E ⇒E+E*E 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Exercise:  Is the following grammar ambiguous? 
S!AS | ε 
A!A1 | 0A1 | 01 
 
Try deriving for 00111: 
 
 
 
Removing Ambiguity 

� No algorithm can tell us if an arbitrary CFG is ambiguous in the first place 
� Halting / Post Correspondence Problem 

� Why care? 
� Ambiguity can be a problem in things like programming languages where 

we want agreement between the programmer and compiler over what 
happens 

� Solutions 
� Apply precedence 
� e.g.  Instead of:   E! E+E | E*E 
� Use:  E! T | E + T,   T! F | T * F 

� This rule says we apply + rule before the * rule (which means we 
multiply first before adding) 
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