
CS351 - Finite Automata 
 
This handout will describe finite automata, a mechanism that can be used to construct 
regular languages.  We’ll describe regular languages in an upcoming set of lecture notes. 
We will study two types of finite automata: 
 
 Deterministic (DFA) – There is a fixed number of states and we can only be in 
one state at a time 
 
 Nondeterministic (NFA) –There is a fixed number of states but we can be in 
multiple states at one time 
 
While NFA’s are going to be more expressive than DFA’s, we will see that adding 
nondeterminism does not let us define any language that cannot be defined by a DFA.  
One way to think of this is we might write a program using a NFA, but then when it is 
“compiled” we turn the NFA into an equivalent DFA. 
 
Informal Automata Example 
 
Let’s use the example from the textbook as an informal introduction to automata.  Let’s 
model a customer shopping at a store using some form of electronic money that can 
change hands at a bank   
 
The customer may pay the e-money or cancel the e-money at any time. 
The store may ship goods and redeem the electronic money with the bank.  
The bank may transfer any redeemed money to a different party, say the store. 
 
We can model the electronic money protocol through three automata, each from the 
perspective of the entities.   The edges on the arcs from one state to another are actions 
that are initiated by one of the entities.  Let’s say that in this example, we would like the 
store to have the flexibility of shipping, redeeming, and transferring e-money in different 
orders. 
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In the automata, actions in bold are initiated by the entity.  Otherwise, the actions are 
initiated by someone else and received by the specified automata. 
 
First, consider the automata for the bank.  The bank starts in state 1.   It sits in state 1 
until a cancel or redeem is received.   The cancel will be issued from the customer, while 
the redeem is issued from a store.  If a cancel is received, the bank restores the e-money 
to the customer’s account, and sits in state 2, which does not allow anything else to 
happen with this money (i.e. the customer can’t spend it later).  If a redeem is received, 
we move to state 3 and then issue a transfer with new e-money now belonging to the 
store. 
 
The customer’s automata is simple; the customer may pay or cancel at any and in any 
order, and always stays in the lone state after each action.  It will be up to the other 
entities to not allow money to be paid or cancelled multiple times. 
 
The store’s system is set up to allow the shipping and financial operations to be separate 
processes.  This allows the ship action to be done either before, after, or during the e-
money transaction.  Such flexibility could be useful for different types of purchases.   
Once a store receives the pay action from a customer, it may then redeem/ship/transfer, 
ship/redeem/transfer, or redeem/transfer/ship ultimately ending up in state g. 
 
Ignoring Actions 
 
The three automata have been set up to reflect the behaviors of interest.  To be more 
precise, with a DFA (deterministic finite automaton) we should specify arcs for all 
possible inputs.  
 
For example, what should the customer automaton do if it receives a “redeem”?  What 
should the bank do if it is in state 2 and receives a “redeem”?  These behaviors are 
unspecified currently. 
 
The typical behavior if we receive an unspecified action is for the automaton to die.  The 
automaton enters no state at all, and further action by the automaton would be ignored.  
The best method though is to specify a state for all behaviors, as indicated below for the 
bank automaton. 
 
 
 
 
 
 
 
 
 
 
 

1

Start

Bank

3

2

4

Cancel

Redeem Transfer

Redeem, Transfer,
Pay, Ship, Cancel

Redeem, Pay,
Ship, Cancel

Redeem, Transfer,
Pay, Ship, Cancel

Transfer, Pay,
Ship



 
The Entire System as an Automaton 
 
When there are multiple automata for a system, it is useful to incorporate all of the 
automata into a single one so that we can better understand the interaction.  This can be 
accomplished by constructing the product automaton.  The product automaton creates a 
new state for all possible states of each automaton. 
 
Since the customer automaton only has one state, we only need to consider the pair of 
states between the bank and the store.  For example, we start in state (a,1) where the store 
is in its start state, and the bank is in its start state.  From there we can move to states 
(a,2) if the bank receives a cancel, or state (b,1) if the store receives a pay. 
 
To construct the product automaton, we run the bank and store automaton “in parallel” 
using all possible inputs and creating an edge on the product automaton to the 
corresponding set of states.    From the start state, the reachable states in the product 
automaton are shown below where the column and row labels indicate the state in the 
bank and store automata: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
How is this useful?  It can help validate our protocol.  First, it tells us that not all states 
are reachable from the start state. For example, we should never be in state (g,1) where 
we have shipped and transferred cash, but the bank is still waiting for a redeem.   
 
Second, the product automata allows us to see if potential errors can occur.  From the 
automata we can see that we can reach state (c, 2).  This is problematic because it allows 
a product to be shipped but the money has not been transferred to the store.   
 
In contrast, we can see that if we reach state (d, 3) or (e, 3) then the store should be okay 
– a transfer from the bank must occur (assuming the bank automaton doesn’t “die” which 
is why it is useful to add arcs for all possible inputs to complete the automaton). 
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Formal Definition of a Deterministic Finite Automaton (DFA) 
 
1. Finite set of states, typically Q. 
2. Alphabet of input symbols, typically ∑ 
3. One state is the start/initial state, typically q0 
4. Zero or more final/accepting states; the set is typically F. 
5. A transition function, typically δ . This function: 

• Takes a state and input symbol as arguments. 
• Returns a state. 
• One “rule” of δ  would be written δ (q, a) = p, where q and p are states, and a is 

an input symbol. 
• Intuitively: if the FA is in state q, and input a is received, then the FA goes to state 

p (note: q = p OK). 
6. A FA is represented as the five-tuple: A = (Q, ∑,δ ,q0; F).   Here, F is a set of 
accepting states. 
 
Example : One-Way Automatic Door 
 
As an example, consider a one-way automatic door.  This door has two pads that can 
sense when someone is standing on them, a front and rear pad. We want people to walk 
through the front and toward the rear, but not allow someone to walk the other direction: 
 
 
 
 
 
 
 
 
Let’s assign the following codes to our different input cases: 
 a   -  Nobody on either pad 
 b   -  Person on front pad 
 c   -  Person on rear pad 
 d   -  Person on front and rear pad 
 
We can design the following automaton so that the door doesn’t open if someone is still 
on the rear pad and hit them: 
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Using our formal notation, we have: 
 Q = {C, O}      (usually we’ll use q0 and q1 instead) 
 F = {}    There is no final state 
 q0 = C  This is the start state 
 ∑ = {a,b,c,d} 
 The transition function, δ , can be specified by the table: 
 
  a b c c 
 � C C O C C 
      O C O O O 
 
The start state is indicated with the � 
If there are final accepting states, that is indicated with a * in the proper row. 
 
Exercise: 
 
Using ∑={0,1} a “clamping” circuit waits for a 1 input, and forever after makes a 1 
output regardless of the input. However, to avoid clamping on spurious noise, design a 
DFA that waits for two 1's in a row, and “clamps” only then. 
 
Write the transition function in table format as well as graph format. 
 
 
 
 
 
 
 
 
 
 
 
Extension ofδ  to paths 
 
Intuitively, a FA accepts a string w = a1a2…an if there is a path in the transition diagram 
that: 
1. Begins at the start state, 
2. Ends at an accepting state(s), and 
3. Has sequence of labels a1a2…an 
 
Formally, we extend transition function δ  to δ ^(q, w), where w can be any string of 
input symbols.  δ ^ is called the extended transition function. We can define δ ^ by 
induction as follows: 
 
Basis: δ ^(q,ε) = q (i.e., on no input, the FA doesn't go anywhere.) 



Induction:  δ ^(q, wa) = δ (δ ^(q,w),a), where w is a string, and a is a single symbol (i.e., 
see where the FA goes on w, then look for the transition on the last symbol from that 
state). 
 
Important fact with a straightforward, inductive proof: δ ^ really represents paths. That 
is, if w = a1a2...an, and δ(pi , ai) =pi+1 for all i = 0,1, …, n-1, then δ ^(p0, w) =pn. 
 
Acceptance of Strings 
 
A finite automata A = (Q, ∑, δ, q0, F) accepts string w if δ ^(q0, w) is in F. 
 
Language of a Finite Automata 
 
A finite automata A accepts the language L(A) = {w | δ ^(q0, w) is in F} 
In other words, the language is all of those strings that are accepted by the finite 
automata. 
 
For example, here is a DFA for the language that is the set of all strings of 0’s and 1’s 
whose numbers of 0’s and 1’s are both even: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Aside : Type Errors 
 
A major source of confusion when dealing with automata (or mathematics in general) is 
making “type errors."   

• Don't confuse A, a FA, i.e., a program, with L(A), which is of type “set of 
strings."  

• The start state q0 is of type “state," but the accepting states F is of type “set of 
states." 

• a could be a symbol or a could be a string of length 1 depending on the context 
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DFA Exercise:  The figure below is a marble-rolling toy.  A marble is dropped at A or B.  
Levers x1, x2, and x3 cause the marble to fall either to the left or to the right.  Whenever 
a marble encounters a lever, it causes the lever to reverse after the marble passes, so the 
next marble will take the opposite branch. 
 
Model this game by a finite automaton.  Let acceptance correspond to the marble exiting 
at D.  Non-acceptance represents a marble exiting at C. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The key to solving this problem is to recognize that the inputs and outputs (A-D) become 
the alphabet of the automaton, while the levers indicate the possible states. If we define 
the initial status of each lever to be a 0, then if the levers change direction they are in 
state 1. 
 
Let’s use the format x1x2x3 to indicate a state.  The initial state is 000.  If we drop a 
marble down B, then the state becomes to 011 and the marble exits at D. 
 
Since we have three levers that can take on binary values, we have a total of 8 possible 
states, 000 to 111.  We further identify the states by appending an “a” for acceptance, or 
“r” for rejection. This leads to a total of 16 possible states. All we need to do is start from 
the initial state and draw out the new states we are led to as we get inputs from A or B. 
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This may be a bit easier to view in table format.  Note that not all of the 16 states are 
accessible. 
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Nondeterministic Finite Automata 
 
A NFA (nondeterministic finite automata) is able to be in several states at once.  A 
particular state of a DFA may accept only one destination state for a particular input.  
However, an NFA may accept multiple destination states for the same input.  You can 
think of this as the NFA “guesses” something about its input and will always follow the 
proper path if that can lead to an accepting state. 
 
Another way to think of the NFA is that it travels all possible paths, and so it remains in 
many states at once.  As long as at least one of the paths results in an accepting state, the 
NFA accepts the input.    This is a useful tool to have and is more expressive than a DFA.  
However, to actually implement the NFA, we must implement it deterministically.  That 
is, we will see that for any NFA we can construct a corresponding DFA. 
 
Consider the following NFA, whose job is to accept all and only the strings of 0’s and 1’s 
that end in 01: 
 
 
 
 
 
 
 
 
 
Note that we haven’t specified all possible inputs for each state.  If a state receives an 
unspecified input, the automaton “dies.” 
 
Also, note that from state q0 we have two possible states if the input is 0.  We can go back 
to state q0 or we can move to state q1. 
 
The way to read this automaton is that we can enter multiple states whenever possible.  
You can think of this as parallel “threads” of execution.  The tree below shows what 
happens for an input of 1100101: 
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Formal Definition of an NFA 
 
An NFA is defined similarly to a DFA: 
 
1. Finite set of states, typically Q. 
2. Alphabet of input symbols, typically ∑ 
3. One state is the start/initial state, typically q0 
4. Zero or more final/accepting states; the set is typically F. 
5. A transition function, typically δ . This function: 

• Takes a state and input symbol as arguments. 
• Returns a set of states instead of a single state, as a DFA 

6. A FA is represented as the five-tuple: A = (Q, ∑,δ ,q0, F).   Here, F is a set of accepting 
states. 
 
The previous NFA could be specified formally as: 
 
({q0,q1,q2}, {0,1}, δ, q0, {q2}) 
 
The transition table is: 
 
  0  1 
 � q0 {q0,q1} {q0} 
      q1 Ø  {q2} 
    *q2 Ø  Ø 
 
Example:  Here is an NFA that will accept strings over alphabet 
{1, 2, 3} such that the last symbol appears at least twice, but without any intervening 
higher symbol, in between: 
e.g., 11, 2112, 123113, 3212113, etc. 
 
Trick: use start state to mean “I guess I haven't seen the symbol that matches the 
ending symbol yet.”  Use three other states to represent a guess that the matching symbol 
has been seen, and remembers what that symbol is. 
 



 
What is the transition table for this NFA? 
 
 
 
 
 
The Extended Transition Function 
 
Just as we had an extended transition function for a DFA, we can have the same thing for 
an NFA and extend it to support strings.  The difference from the extended transition 
function for the DFA is that we can be in a set of states instead of a specific, deterministic 
state upon processing some string. 
 
For example, consider the tree for the NFA we constructed earlier that recognizes strings 
that end in 01.  After processing 1100, we can be in one of two states: q0 or q1. With a 
DFA, we would only be in one state.   
 
Formally, we define δ^, the extended transition function for an NFA, inductively as 
follows: 
 
Basis:  δ^(q,ε) = {q}.  That is, without reading any input symbols, we are in the same set 
of states we begin in. 
 
Induction:  Let 

• δ^(q,w) = {p1, p2, … pk} 
• δ(pi,a) = Si for i=1,2,…k 

Then δ^(q, wa) = S1 ∪ S2 ∪ … ∪ Sk 



Less formally, we compute δ^(q,w) by first computing δ^(q,x) and then follow any 
transition from one of these states to complete w,  where w = xa, where a is a single 
symbol in the alphabet. 
 
For example, returning to the NFA that accepts strings ending in 01: 
 
δ^(q0, ε) = { q0 } 
δ^(q0, 0) = δ(q0, 0) = {q0, q1} 
δ^(q0, 00) = δ(q0,0) ∪ δ(q1, 0) = {q0, q1}  
δ^(q0,001) = δ(q0,1) ∪ δ(q1, 1) = {q0} ∪ {q2} = {q0, q2 } 
 
Language of an NFA 
 
An NFA accepts w if any path from the start state to an accepting state is labeled w. 
Formally: 

L(N) = { w | δ^(q0, w) ∩ F ≠ Ø } 
 
That is, for an NFA N, L(N) is the set of strings w in ∑* such that δ^(q0, w) contains at 
least one accepting state. 
 
The language for the example we have been using is informally: 
 
 L = {w | w ends in 01 } 
 
Equivalence of DFA and NFA 
 
Although there are many languages for which an NFA is easier to construct than a DFA, 
it is perhaps a surprising fact that every language that can be described by some NFA can 
also be described by some DFA.  That is, we can construct a DFA that accepts the same 
strings as a NFA.  The downside is there may be up to 2n states in the turning a NFA into 
a DFA.  However, for most problems the number of states is approximately equivalent. 
 
The process of turning an NFA into a DFA is called subset construction because it 
involves constructing up to all of the set of states of the NFA. 
 
Let an NFA N be defined as N = (QN, ∑,δ N,q0, FN).    
The equivalent DFA D  = (QD, ∑,δD , {q0 }, FD) where: 
 

1. QD = 2Qn
   ; i.e. QD is the set of all subsets of QN; that is, it is the power set of QN.  

Often, not all of these states are accessible from the start state; these states may be 
“thrown away.” 

2. FD is the set of subsets S of QN such that S ∩ FN ≠ Ø.  That is, FD is all sets of N’s 
states that include at least one accepting state of N. 

3. For each set S ⊆ QN and for each input symbol a in ∑: 
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 That is, to compute δD(S, a) we look at all the states p in S, see what states N goes 
to starting from p on input a, and take the union of all those states. 
 
Consider once again the NFA that accepts strings ending in 01: 
 
 

 
 
 
 
 
The power set of these states is:  { Ø, {q0}, {q1}, {q2}, {q0, q1}, {q0, q2},{q1, q2}, {q0, q1, 
q2} } 
 
We construct a new transition function with all of these states and go to the set of 
possible inputs: 
 

 0 1 
Ø Ø Ø 
� {q0} {q0, q1} {q0} 
{q1} Ø {q2} 
*{q2} Ø Ø 
{q0, q1} {q0, q1} {q0, q2} 
*{q0, q2} {q0, q1} {q0} 
*{q1, q2} Ø {q2} 
*{q0, q1, q2} {q0, q1} {q0, q2} 

 
The start state is {q0} and the final states are any of those that contain q2. 
Note that many of these states are unreachable from our start state.  A good way to 
construct the equivalent DFA from an NFA is to start with the start states and construct 
new states on the fly as we reach them: 
 

 0 1 
Ø Ø Ø 
� {q0} {q0, q1} {q0} 
{q0, q1} {q0, q1} {q0, q2} 
*{q0, q2} {q0, q1} {q0} 

 
This new transition function can be expressed graphically as: 
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Theorem:  L(D) = L(N) for an appropriately constructed DFA from an NFA. 
See the book for the inductive proof. 
 
Theorem:  A language L is accepted by some DFA if and only if L is accepted by some 
NFA. 
Informal Proof:  The “if” part is the subset construction proof from the theorem above.  
The “only if” part is proved since it is trivial to turn a DFA into an NFA (in effect there is 
nothing to do since it is valid to have an NFA with a deterministic set of states). 
 
A bad case for subset construction: We can see that a bad case for subset construction is 
when we can actually reach all (or most) of the 2n possible subsets of states.  Here is one 
example, a NFA that accepts any string of 0’s and 1’s such that the nth symbol from the 
end is 1.  In this case, we have n=3: 
 
 
 
 
 
 
 
 
For the string that ends in 100, 101, 110, or 111 the NFA stays in the start state until we 
reach one of these suffixes and proceed to the final state at q3.  Any other input will “die” 
out at q3 when we receive further input.   
 
Here is a table representing the conversion to a DFA: 
 

 0 1 
Ø Ø Ø 
� {q0} {q0} {q0, q1} 
{q0, q1} {q0, q2} {q0, q1, q2} 
{q0, q2} {q0, q3} {q0, q1, q3} 
*{q0, q3} {q0} {q0, q1} 
{q0, q1, q2} {q0, q2, q3} {q0, q1, q2, q3} 
*{q0, q1, q2, q3} {q0, q2, q3} {q0, q1, q2, q3} 
*{q0, q2, q3} {q0, q3} {q0, q1, q3} 
*{q0, q1, q3} {q0, q2 } {q0, q1, q2} 

 
In this case, we have 2n states (23 in this example, or 8 states). 
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Exercise:  Convert the following NFA to a DFA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Exercise:  Convert the following NFA into a DFA (this is the NFA that recognizes strings 
with smaller numbers between the last value and an earlier value) 
 

 
 
There should be 15 possible states (might be easier to represent in table format) 
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Finite Automate with Epsilon Transitions 
 
We can extend an NFA by introducing a “feature” that allows us to make a transition on 
ε, the empty string.  All the ε transition lets us do is spontaneously make a transition, 
without receiving an input symbol.  This is another mechanism that allows our NFA to be 
in multiple states at once.  Whenever we take an ε edge, we must fork off a new “thread” 
for the NFA starting in the destination state.   
 
Just as nondeterminism made NFA’s more convenient to represent some problems than 
DFA’s but were not more powerful, the same applies to ε-NFA’s.  While more 
expressive, anything we can represent with an ε-NFA we can represent with a DFA that 
has no ε-transitions. 
 
The formal notation of an ε-NFA is the same as a regular NFA A = {Q, ∑, δ, q0, F) 
except that the transition function δ is now a function that takes as arguments: 
 

1. A state in Q and 
2. A member of ∑ ∪ {ε}; that is, an input symbol or the symbol ε.   We require that 

ε not be a symbol of the alphabet ∑ to avoid any confusion. 
 
Example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this ε-NFA, the string “001” is accepted by the path qsrqrs,  where the first qs matches 
0, sr matches ε, rq matches 0, qr matches 1, and then rs matches ε.  In other words, the 
accepted string is 0ε0ε1ε. 
 
 
 
Epsilon Closure 
 
Epsilon closure of a state is simply the set of all states we can reach by following the 
transition function from the given state that are labeled ε.  Generally speaking, a 
collection of objects is closed under some operation if applying that operation to 
members of the collection returns an object still in the collection. 
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In the above example: 
 
 ε-closure(q)  = { q } 
 ε-closure(r) = { r, s} 
 
Epsilon closure lets us define the extended transition function for an ε-NFA.  For a 
regular, NFA we said for the induction step: 
 
Let 

• δ^(q,w) = {p1, p2, … pk} 
• δ(pi,a) = Si for i=1,2,…k 

Then δ^(q, wa) = S1 ∪ S2 ∪ … ∪ Sk 
 
For an ε-NFA, we change for δ^(q, wa): 
 Union[ε-closure(Each state in S1, S2, … Sk)] 
 
This includes the original set S1 ∪ S2 ∪ … ∪ Sk as well as any states we can reach via ε. 
 
When coupled with the basis that δ^(q, ε) = ε-closure(q) lets us inductively define an 
extended transition function for a ε-NFA. 
 
Eliminating ε-Transitions 
 
ε-Transitions are a convenience in some cases, but do not increase the power of the NFA.  
To eliminate them we can convert a ε-NFA into an equivalent DFA, which is quite 
similar to the steps we took for converting a normal NFA to a DFA, except we must now 
follow all ε-Transitions and add those to our set of states. 
 

1. Compute ε-closure for the current state, resulting in a set of states S. 
2. δD(S,a) is computed for all a in Σ by 

a. Let S = {p1, p2, … pk} 

b. Compute U
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δ and call this set {r1, r2, r3 … rm}  This set is achieved 

by following input a, not by following any ε-transitions 
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3. Make a state an accepting state if it includes any final states in the ε-NFA. 
 
Example 
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Converts to: 

 
In this case the DFA is actually a bit simpler! 
 
 
Exercise:  Design an ε-NFA for the language consisting of zero or more a’s followed by 
zero or more b’s followed by zero or more c’s. 
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