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Greedy Algorithms

Spanning Trees

Chapter 16, 23

What makes a greedy algorithm?

• Feasible
– Has to satisfy the problem’s constraints

• Locally Optimal
– The greedy part

– Has to make the best local choice among all feasible choices available 
on that step

• If this local choice results in a global optimum then the problem has optimal 
substructure

• Irrevocable
– Once a choice is made it can’t be un-done on subsequent steps of the 

algorithm

• Simple examples:  
– Playing chess by making best move without lookahead

– Giving fewest number of coins as change

• Simple and appealing, but don’t always give the best solution



2

Activity Selection Problem

• Problem: Schedule an exclusive resource in 
competition with other entities.  For example, 
scheduling the use of a room (only one entity 
can use it at a time) when several groups want 
to use it.  Or, renting out some piece of 
equipment to different people.

• Definition:  Set S={1,2, … n} of activities.  Each 
activity has a start time si and a finish time fj, 
where si <fj.  Activities i and j are compatible if 
they do not overlap.  The activity selection 
problem is to select a maximum-size set of 
mutually compatible activities.

Greedy Activity Selection

• Just march through each activity by finish 

time and schedule it if possible:
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Activity Selection Example

Schedule job 1, then try rest:  (end up with 1, 4, 8):

T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10 T=11 T=12 T=13

1 1 1 1

Runtime?

Greedy vs. Dynamic?

• Greedy algorithms and dynamic programming are 
similar; both generally work under the same 
circumstances although dynamic programming solves 
subproblems first. 
– Often both may be used to solve a problem although this is not 

always the case.

• Consider the 0-1 knapsack problem.  A thief is robbing a 
store that has items 1..n.  Each item is worth v[i] dollars 
and weighs w[i] pounds.  The thief wants to take the 
most amount of loot but his knapsack can only hold 
weight W.  What items should he take?
– Greedy algorithm:  Take as much of the most valuable item first.   

Does not necessarily give optimal value! 
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Fractional Knapsack Problem

• Consider the fractional knapsack problem.  This time the 
thief can take any fraction of the objects.  For example, 
the gold may be gold dust instead of gold bars.   In this 
case, it will behoove the thief to take as much of the 
most valuable item per weight (value/weight)  he can 
carry, then as much of the next valuable item, until he 
can carry no more weight.

• Moral
– Greedy algorithm sometimes gives the optimal solution, 

sometimes not, depending on the problem.

– Dynamic programming, when applicable, will typically give 
optimal solutions, but are usually trickier to come up with and 
sometimes trickier to implement.

Spanning Tree

• Definition

– A spanning tree of a graph G is a tree (acyclic) that 

connects all the vertices of G once

• i.e. the tree “spans” every vertex in G

– A Minimum Spanning Tree (MST) is a spanning tree 

on a weighted graph that has the minimum total 

weight

w T w u v
u v T
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,




  such that w(T) is minimum 

Where might this be useful?  Can also be used to approximate some

NP-Complete problems
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Sample MST

• Which links to make this a MST?
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8

Optimal substructure:  A subtree of the MST must in turn be a MST of the

nodes that it spans.

MST Claim

• Claim:  Say that M is a MST

– If we remove any edge (u,v) from M then this 

results in two trees, T1 and T2.

– T1 is a MST of its subgraph while T2 is a MST 

of its subgraph.

– Then the MST of the entire graph is T1 + T2 + 

the smallest edge between T1 and T2

– If some other edge was used, we wouldn’t 

have the minimum spanning tree overall
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Greedy Algorithm

• We can use a greedy algorithm to find the 

MST.

– Two common algorithms

• Kruskal

• Prim

Kruskal’s MST Algorithm

• Idea:  Greedily construct the MST

– Go through the list of edges and make a 

forest that is a MST

– At each vertex, sort the edges

– Edges with smallest weights examined and 

possibly added to MST before edges with 

higher weights

– Edges added must be “safe edges” that do 

not ruin the tree property.
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Kruskal’s Algorithm

 Kruskal(G,w)  ; Graph G, with weights w 

  A{}  ; Our MST starts empty 

  for each vertex v V G [ ] do Make-Set(v)  ; Make each vertex a set 

  Sort edges of E by increasing weight 

  for each edge ( , )u v E in order 

   ;  Find-Set returns a representative (first vertex) in the set 

   do if Find-Set(u)  Find-Set(v) 

        then AA{( , )}u v  

                Union(u,v)  ; Combines two trees 

  return A 

Kruskal’s Example
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• A={ }, Make each element its own set.  {a} {b} {c} {d} {e} {f} {g} {h}

• Sort edges.

• Look at smallest edge first: {c} and {f} not in same set, add it to A, union together.

• Now get {a} {b} {c f} {d} {e} {g} {h}
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Kruskal Example
Keep going, checking next smallest edge.  

Had: {a} {b} {c f} {d} {e} {g} {h}
{e} ≠ {h}, add edge.
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Now get {a} {b} {c f} {d} {e h} {g}

Kruskal Example
Keep going, checking next smallest edge.

Had: {a} {b} {c f} {d} {e h} {g}

{a} ≠ {c f}, add edge.
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Now get {b} {a c f} {d} {e h} {g}
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Kruskal’s Example
Keep going, checking next smallest edge. 

Had {b} {a c f} {d} {e h} {g}
{b}  {a c f}, add edge.
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Now get {a b c f} {d} {e h} {g}

Kruskal’s Example
Keep going, checking next smallest edge.  

Had {a b c f} {d} {e h} {g}
{a b c f} = {a b c f}, dont add it!
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Kruskal’s Example
Keep going, checking next smallest edge.  

Had {a b c f} {d} {e h} {g}
{a b c f} = {e h}, add it.
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Now get {a b c f e h} {d}{g}

Kruskal’s Example
Keep going, checking next smallest edge.  

Had {a b c f e h} {d}{g}

{d}  {a b c e f h}, add it.
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e f g

h

Now get {a b c d e f h} {g}
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Kruskal’s Example
Keep going, check next two smallest edges.  

Had {a b c d e f h} {g}
{a b c d e f h} = {a b c d e f h}, don’t add it.
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Kruskal’s Example

Do add the last one:

Had {a b c d e f h} {g}
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Runtime of Kruskal’s Algo

• Runtime depends upon time to union set, find 
set, make set

• Simple set implementation: number each vertex 
and use an array
– Use an array 

member[]  : member[i] is a number j such that the ith vertex is 
a member of the jth set.

– Example
member[1,4,1,2,2] 

indicates the sets S1={1,3}, S2={4,5} and S4={2}; 

i.e. position in the array gives the set number.  Idea similar to 
counting sort, up to number of edge members.

Set Operations

• Given the Member array

• Make-Set(v)

member[v] = v

Make-Set runs in constant running time for a single set.

• Find-Set(v)

Return member[v]

Find-Set runs in constant time.

• Union(u,v)

for i=1 to n

do if member[i] = u then member[i]=v

Scan through the member array and update old members to be the new set.

Running time O(n), length of member array. 

1 2

3

member = [1,2,3] ;  {1} {2} {3}

find-set(2)  = 2

Union(2,3)

member  = [1,3,3]  ; {1} {2 3}
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Overall Runtime

 Kruskal(G,w)  ; Graph G, with weights w 

  A{}  ; Our MST starts empty 

  for each vertex v V G [ ] do Make-Set(v)  ; Make each vertex a set 

  Sort edges of E by increasing weight 

  for each edge ( , )u v E in order 

   ;  Find-Set returns a representative (first vertex) in the set 

   do if Find-Set(u)  Find-Set(v) 

        then AA{( , )}u v  

                Union(u,v)  ; Combines two trees 

  return A 

O(V)

O(ElgE) – using heapsort

O(1)

O(V)

Total runtime:  O(V)+O(ElgE)+O(E*(1+V))  =  O(E*V)

Book describes a version using disjoint sets that runs in O(E*lgE) time

O(E)

Prim’s MST Algorithm

• Also greedy, like Kruskal’s

• Will find a MST but may differ from Prim’s if multiple MST’s are 

possible

 MST-Prim(G,w,r)   ; Graph G, weights w, root r 

  QV[G] 

  for each vertex u Q  do key[u]     ; infinite “distance” 

  key[r] 0    

  P[r] NIL 

  while Q<>NIL do 

   uExtract-Min(Q)  ; remove closest node 

   ; Update children of u so they have a parent and a min key val 

   ; the key is the weight between node and parent 

   for each vAdj[u] do 

    if vQ & w(u,v)<key[v] then  

     P[v] u 

     key[v] w(u,v) 
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Prim’s Example

Example: Graph given earlier. 

Q={ (e,0) (a, ) (b, ) (c, ) (d, ) (f, ) (g, ) (h, ) } 
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Extract min, vertex e.  Update neighbor if in Q and weight < key. 

Prim’s Example
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Q={ (a, ) (b,14) (c, ) (d, ) (f, ) (g, ) (h,3) } 

 

Extract min, vertex h.  Update neighbor if in Q and weight < key 
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Prim’s Algorithm
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Q={ (a, ) (b,10) (c, ) (d, ) (f,8) (g, ) } 

 

Extract min, vertex f.  Update neighbor if in Q and weight < key 

Prim’s Algorithm
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Q={ (a, ) (b,10) (c, 2) (d, ) (g,15) } 

 

Extract min, vertex c.  Update neighbor if in Q and weight < key 
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Prim’s Algorithm
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0/nil

5/c

4/c

3/e

2/f
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9/c

15/f

 
Q={ (a,4) (b,5) (d,9) (g,15) } 

 

Extract min, vertex a.  No keys are smaller than edges from a (4>2 on edge ac, 6>5 on edge ab) so nothing 

done. 

 

Q={ (b,5) (d,9) (g,15) } 

 

Extract min, vertex b. 

 

Same case, no keys are smaller than edges, so nothing is done. 

Same for extracting d and g, and we are done. 

Prim’s Algorithm

Get spanning tree by connecting nodes with their parents:
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Runtime for Prim’s Algorithm
 MST-Prim(G,w,r)   ; Graph G, weights w, root r 

  QV[G] 

  for each vertex u Q  do key[u]     ; infinite “distance” 

  key[r] 0    

  P[r] NIL 

  while Q<>NIL do 

   uExtract-Min(Q)  ; remove closest node 

   ; Update children of u so they have a parent and a min key val 

   ; the key is the weight between node and parent 

   for each vAdj[u] do 

    if vQ & w(u,v)<key[v] then  

     P[v] u 

     key[v] w(u,v) 

The inner loop takes O(E lg V) for the heap update inside the O(E) loop.  

This is over all executions, so it is not multiplied by O(V) for the while loop 

(this is included in the O(E) runtime through all edges.

The Extract-Min requires O(V lg V) time.  

O(lg V) for the Extract-Min and O(V) for the while loop.

Total runtime is then O(V lg V) + O(E lg V) which is O(E lg V) 

in a connected graph 

(a connected graph will always have at least V-1 edges).

O(V) if using a heap

O(V)

O(lgV) if using a heap

O(E) over entire while(Q<>NIL) loop

O(lgV) to update if using a heap!

Prim’s Algorithm – Linear Array for 

Q

• What if we use a simple linear array for the 

queue instead of a heap?

– Use the index as the vertex number

– Contents of array as the distance value

– E.g.
Val[10   5    8    3 … ]

Par[6     4    2    7 …]

Says that vertex 1 has key = 10, vertex 2 has key = 5, etc.

Use special value for infinity or if vertex removed from the queue

Says that vertex 1 has parent node 6,  vertex 2 has parent node 4, etc.

Building Queue:  O(n) time    to create arrays

Extract min:   O(n) time   to scan through the array

Update key:  O(1) time
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Runtime for Prim’s Algorithm with 

Queue as Array
 MST-Prim(G,w,r)   ; Graph G, weights w, root r 

  QV[G] 

  for each vertex u Q  do key[u]     ; infinite “distance” 

  key[r] 0    

  P[r] NIL 

  while Q<>NIL do 

   uExtract-Min(Q)  ; remove closest node 

   ; Update children of u so they have a parent and a min key val 

   ; the key is the weight between node and parent 

   for each vAdj[u] do 

    if vQ & w(u,v)<key[v] then  

     P[v] u 

     key[v] w(u,v) 

The inner loop takes O(E ) over all iterations of the outer loop.

It is not multiplied by O(V) for the while loop.

The Extract-Min requires O(V ) time.  

This is O(V2) over the while loop.

Total runtime is then O(V2) + O(E) which is O(V2)

Using a heap our runtime was O(E lg V).    Which is worse?    

Which is worse for a fully connected graph?

O(V) to initialize array

O(V)

O(V) to search array

O(E) over entire while(Q<>NIL) loop

O(1) direct access via array index

Approximations for Hard Problems

• Greedy algorithms are commonly used to find 
approximations for NP-Complete problems

• Use a heuristic to drive the greedy selection
– Heuristic: A common-sense rule that approximates 

moves toward the optimal solution

• If our problem is to minimize a function f where
– f(s*) is the value of the exact solution; global minimum

– f(sa) is the value of our approximate solution

– Then we want to minimize the ratio:
• f(sa) / f(s*) such that this approaches 1

• Opposite if maximizing a function
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Example: Traveling Salesman 

Problem
• Cheap greedy solution to the TSP:

– Choose an arbitrary city as the start

– Visit the nearest unvisited city; repeat until all cities have been 
visited

– Return to the starting city

• Example graph:

a b

d c

1

2

3
3

1

6

Starting at a:   a->b->c->d->a

Total = 10

Optimal:  8     a->b->d->c->a

r(sa) = 10/8 = 1.25

Is this a good approach?  What if a->d  = 999999?

Greedy TSP

• Our greedy approach is not so bad if the graph adheres 
to Euclidean geometry
– Triangle inequality

• d[i,j] ≤ d[i,k] + d[k,j]    for any triple cities i,j,k

– Symmetry

• d[i,j] = d[j,i]     for any pair of cities i,j

• In our previous example, we couldn’t have a one-way 
edge to a city of 999999 where all the other edges are 
smaller  (if a city is far away, forced to visit it some way)

• It has been proven for Euclidean instances the nearest 
neighbor algorithm:
– f(sa) / f(s*)  ≤  (lg n + 1) / 2  n ≥ 2 cities
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Minimum Spanning Tree 

Approximation
• We can use a MST to get a better approximation 

to the TSP problem

• This is called a twice-around-the-tree algorithm

• We construct a MST and “fix” it up so that it 
makes a valid tour
– Construct a MST of the graph corresponding to the 

TSP problem

– Starting at an arbitrary vertex, perform a DFS walk 
around the MST recording the vertices passed by

– Scan the list of vertices from the previous step and 
eliminate all repeat occurrences except the starting 
one.  The vertices remaining will form a Hamiltonian 
circuit that is the output of the algorithm.

MST Approximation to TSP

• Example graph:

a e

b d

12

7

9
9

8

4

c

8

12

6 12

a e

b d

7

8

4

c

6

MST:  ab, bc, bd, de

Walk:  a, b, c, b, d, e, d, b, a  a, b, c, d, e, a
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MST Approximation

• Runtime:  polynomial (Kruskal/Prim)

• Claim:
– f(sa) < 2f(s*)

– Length of the approximation solution at most twice the length of the 
optimal

• Since removing any edge from s* yields a spanning tree T of weight 
w(T) that must be ≥ w(T*), the weight of the graph’s MST, we have:
– f(s*) > w(T)  ≥ w(T*)

– 2f(s*) > 2w(T*)

• The walk of the MST tree we used to generate the approximate 
solution traversed the MST at most twice, so:
– 2w(T*) > f(sa)

• Giving:
– 2f(s*) > 2w(T*)  > f(sa)

– 2f(s*) > f(sa)


