
1

Greedy Algorithms

Spanning Trees

Chapter 16, 23

What makes a greedy algorithm?

• Feasible
– Has to satisfy the problem’s constraints

• Locally Optimal
– The greedy part

– Has to make the best local choice among all feasible choices available
on that step

• If this local choice results in a global optimum then the problem has optimal
substructure

• Irrevocable
– Once a choice is made it can’t be un-done on subsequent steps of the

algorithm

• Simple examples:
– Playing chess by making best move without lookahead

– Giving fewest number of coins as change

• Simple and appealing, but don’t always give the best solution

2

Activity Selection Problem

• Problem: Schedule an exclusive resource in
competition with other entities. For example,
scheduling the use of a room (only one entity
can use it at a time) when several groups want
to use it. Or, renting out some piece of
equipment to different people.

• Definition: Set S={1,2, … n} of activities. Each
activity has a start time si and a finish time fj,
where si <fj. Activities i and j are compatible if
they do not overlap. The activity selection
problem is to select a maximum-size set of
mutually compatible activities.

Greedy Activity Selection

• Just march through each activity by finish

time and schedule it if possible:

3

Activity Selection Example

Schedule job 1, then try rest: (end up with 1, 4, 8):

T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10 T=11 T=12 T=13

1 1 1 1

Runtime?

Greedy vs. Dynamic?

• Greedy algorithms and dynamic programming are
similar; both generally work under the same
circumstances although dynamic programming solves
subproblems first.
– Often both may be used to solve a problem although this is not

always the case.

• Consider the 0-1 knapsack problem. A thief is robbing a
store that has items 1..n. Each item is worth v[i] dollars
and weighs w[i] pounds. The thief wants to take the
most amount of loot but his knapsack can only hold
weight W. What items should he take?
– Greedy algorithm: Take as much of the most valuable item first.

Does not necessarily give optimal value!

4

Fractional Knapsack Problem

• Consider the fractional knapsack problem. This time the
thief can take any fraction of the objects. For example,
the gold may be gold dust instead of gold bars. In this
case, it will behoove the thief to take as much of the
most valuable item per weight (value/weight) he can
carry, then as much of the next valuable item, until he
can carry no more weight.

• Moral
– Greedy algorithm sometimes gives the optimal solution,

sometimes not, depending on the problem.

– Dynamic programming, when applicable, will typically give
optimal solutions, but are usually trickier to come up with and
sometimes trickier to implement.

Spanning Tree

• Definition

– A spanning tree of a graph G is a tree (acyclic) that

connects all the vertices of G once

• i.e. the tree “spans” every vertex in G

– A Minimum Spanning Tree (MST) is a spanning tree

on a weighted graph that has the minimum total

weight

w T w u v
u v T

() (,)
,




 such that w(T) is minimum

Where might this be useful? Can also be used to approximate some

NP-Complete problems

5

Sample MST

• Which links to make this a MST?

6

5

4

2

9

15

14

10

3
8

Optimal substructure: A subtree of the MST must in turn be a MST of the

nodes that it spans.

MST Claim

• Claim: Say that M is a MST

– If we remove any edge (u,v) from M then this

results in two trees, T1 and T2.

– T1 is a MST of its subgraph while T2 is a MST

of its subgraph.

– Then the MST of the entire graph is T1 + T2 +

the smallest edge between T1 and T2

– If some other edge was used, we wouldn’t

have the minimum spanning tree overall

6

Greedy Algorithm

• We can use a greedy algorithm to find the

MST.

– Two common algorithms

• Kruskal

• Prim

Kruskal’s MST Algorithm

• Idea: Greedily construct the MST

– Go through the list of edges and make a

forest that is a MST

– At each vertex, sort the edges

– Edges with smallest weights examined and

possibly added to MST before edges with

higher weights

– Edges added must be “safe edges” that do

not ruin the tree property.

7

Kruskal’s Algorithm

 Kruskal(G,w) ; Graph G, with weights w

 A{} ; Our MST starts empty

 for each vertex v V G [] do Make-Set(v) ; Make each vertex a set

 Sort edges of E by increasing weight

 for each edge (,)u v E in order

 ; Find-Set returns a representative (first vertex) in the set

 do if Find-Set(u)  Find-Set(v)

 then AA{(,)}u v

 Union(u,v) ; Combines two trees

 return A

Kruskal’s Example

6

5

4

2

9

15

14

10

3
8

a

b c d

e f g

h

• A={ }, Make each element its own set. {a} {b} {c} {d} {e} {f} {g} {h}

• Sort edges.

• Look at smallest edge first: {c} and {f} not in same set, add it to A, union together.

• Now get {a} {b} {c f} {d} {e} {g} {h}

8

Kruskal Example
Keep going, checking next smallest edge.

Had: {a} {b} {c f} {d} {e} {g} {h}
{e} ≠ {h}, add edge.

6

5

4

2

9

15

14

10

3
8

a

b c d

e f g

h

Now get {a} {b} {c f} {d} {e h} {g}

Kruskal Example
Keep going, checking next smallest edge.

Had: {a} {b} {c f} {d} {e h} {g}

{a} ≠ {c f}, add edge.

6

5

4

2

9

15

14

10

3
8

a

b c d

e f g

h

Now get {b} {a c f} {d} {e h} {g}

9

Kruskal’s Example
Keep going, checking next smallest edge.

Had {b} {a c f} {d} {e h} {g}
{b}  {a c f}, add edge.

6

5

4

2

9

15

14

10

3
8

a

b c d

e f g

h

Now get {a b c f} {d} {e h} {g}

Kruskal’s Example
Keep going, checking next smallest edge.

Had {a b c f} {d} {e h} {g}
{a b c f} = {a b c f}, dont add it!

6

5

4

2

9

15

14

10

3
8

a

b c d

e f g

h

10

Kruskal’s Example
Keep going, checking next smallest edge.

Had {a b c f} {d} {e h} {g}
{a b c f} = {e h}, add it.

6

5

4

2

9

15

14

10

3
8

a

b c d

e f g

h

Now get {a b c f e h} {d}{g}

Kruskal’s Example
Keep going, checking next smallest edge.

Had {a b c f e h} {d}{g}

{d}  {a b c e f h}, add it.

6

5

4

2

9

15

14

10

3
8

a

b c d

e f g

h

Now get {a b c d e f h} {g}

11

Kruskal’s Example
Keep going, check next two smallest edges.

Had {a b c d e f h} {g}
{a b c d e f h} = {a b c d e f h}, don’t add it.

6

5

4

2

9

15

14

10

3
8

a

b c d

e f g

h

Kruskal’s Example

Do add the last one:

Had {a b c d e f h} {g}

6

5

4

2

9

15

14

10

3
8

a

b c d

e f g

h

12

Runtime of Kruskal’s Algo

• Runtime depends upon time to union set, find
set, make set

• Simple set implementation: number each vertex
and use an array
– Use an array

member[] : member[i] is a number j such that the ith vertex is
a member of the jth set.

– Example
member[1,4,1,2,2]

indicates the sets S1={1,3}, S2={4,5} and S4={2};

i.e. position in the array gives the set number. Idea similar to
counting sort, up to number of edge members.

Set Operations

• Given the Member array

• Make-Set(v)

member[v] = v

Make-Set runs in constant running time for a single set.

• Find-Set(v)

Return member[v]

Find-Set runs in constant time.

• Union(u,v)

for i=1 to n

do if member[i] = u then member[i]=v

Scan through the member array and update old members to be the new set.

Running time O(n), length of member array.

1 2

3

member = [1,2,3] ; {1} {2} {3}

find-set(2) = 2

Union(2,3)

member = [1,3,3] ; {1} {2 3}

13

Overall Runtime

 Kruskal(G,w) ; Graph G, with weights w

 A{} ; Our MST starts empty

 for each vertex v V G [] do Make-Set(v) ; Make each vertex a set

 Sort edges of E by increasing weight

 for each edge (,)u v E in order

 ; Find-Set returns a representative (first vertex) in the set

 do if Find-Set(u)  Find-Set(v)

 then AA{(,)}u v

 Union(u,v) ; Combines two trees

 return A

O(V)

O(ElgE) – using heapsort

O(1)

O(V)

Total runtime: O(V)+O(ElgE)+O(E*(1+V)) = O(E*V)

Book describes a version using disjoint sets that runs in O(E*lgE) time

O(E)

Prim’s MST Algorithm

• Also greedy, like Kruskal’s

• Will find a MST but may differ from Prim’s if multiple MST’s are

possible

 MST-Prim(G,w,r) ; Graph G, weights w, root r

 QV[G]

 for each vertex u Q do key[u]   ; infinite “distance”

 key[r] 0

 P[r] NIL

 while Q<>NIL do

 uExtract-Min(Q) ; remove closest node

 ; Update children of u so they have a parent and a min key val

 ; the key is the weight between node and parent

 for each vAdj[u] do

 if vQ & w(u,v)<key[v] then

 P[v] u

 key[v] w(u,v)

14

Prim’s Example

Example: Graph given earlier.

Q={ (e,0) (a,) (b,) (c,) (d,) (f,) (g,) (h,) }

6

5

4

2

9

15

14

10

3
8

a

b c d

e f g

h

0/nil

inf

inf

inf

inf

inf

inf

inf

Extract min, vertex e. Update neighbor if in Q and weight < key.

Prim’s Example

6

5

4

2

9

15

14

10

3
8

a

b c d

e f g

h

0/nil

14/e

inf

3/e

inf

inf

inf

inf

Q={ (a,) (b,14) (c,) (d,) (f,) (g,) (h,3) }

Extract min, vertex h. Update neighbor if in Q and weight < key

15

Prim’s Algorithm

6

5

4

2

9

15

14

10

3
8

a

b c d

e f g

h

0/nil

10/h

inf

3/e

inf

8/h

inf

inf

Q={ (a,) (b,10) (c,) (d,) (f,8) (g,) }

Extract min, vertex f. Update neighbor if in Q and weight < key

Prim’s Algorithm

6

5

4

2

9

15

14

10

3
8

a

b c d

e f g

h

0/nil

10/h

inf

3/e

2/f

8/h

inf

15/f

Q={ (a,) (b,10) (c, 2) (d,) (g,15) }

Extract min, vertex c. Update neighbor if in Q and weight < key

16

Prim’s Algorithm

6

5

4

2

9

15

14

10

3 8

a

b c d

e f g

h

0/nil

5/c

4/c

3/e

2/f

8/h

9/c

15/f

Q={ (a,4) (b,5) (d,9) (g,15) }

Extract min, vertex a. No keys are smaller than edges from a (4>2 on edge ac, 6>5 on edge ab) so nothing

done.

Q={ (b,5) (d,9) (g,15) }

Extract min, vertex b.

Same case, no keys are smaller than edges, so nothing is done.

Same for extracting d and g, and we are done.

Prim’s Algorithm

Get spanning tree by connecting nodes with their parents:

6

5

4

2

9

15

14

10

3
8

a

b c d

e f g

h

0/nil

5/c

4/c

3/e

2/f

8/h

9/c

15/f

17

Runtime for Prim’s Algorithm
 MST-Prim(G,w,r) ; Graph G, weights w, root r

 QV[G]

 for each vertex u Q do key[u]   ; infinite “distance”

 key[r] 0

 P[r] NIL

 while Q<>NIL do

 uExtract-Min(Q) ; remove closest node

 ; Update children of u so they have a parent and a min key val

 ; the key is the weight between node and parent

 for each vAdj[u] do

 if vQ & w(u,v)<key[v] then

 P[v] u

 key[v] w(u,v)

The inner loop takes O(E lg V) for the heap update inside the O(E) loop.

This is over all executions, so it is not multiplied by O(V) for the while loop

(this is included in the O(E) runtime through all edges.

The Extract-Min requires O(V lg V) time.

O(lg V) for the Extract-Min and O(V) for the while loop.

Total runtime is then O(V lg V) + O(E lg V) which is O(E lg V)

in a connected graph

(a connected graph will always have at least V-1 edges).

O(V) if using a heap

O(V)

O(lgV) if using a heap

O(E) over entire while(Q<>NIL) loop

O(lgV) to update if using a heap!

Prim’s Algorithm – Linear Array for

Q

• What if we use a simple linear array for the

queue instead of a heap?

– Use the index as the vertex number

– Contents of array as the distance value

– E.g.
Val[10 5 8 3 …]

Par[6 4 2 7 …]

Says that vertex 1 has key = 10, vertex 2 has key = 5, etc.

Use special value for infinity or if vertex removed from the queue

Says that vertex 1 has parent node 6, vertex 2 has parent node 4, etc.

Building Queue: O(n) time to create arrays

Extract min: O(n) time to scan through the array

Update key: O(1) time

18

Runtime for Prim’s Algorithm with

Queue as Array
 MST-Prim(G,w,r) ; Graph G, weights w, root r

 QV[G]

 for each vertex u Q do key[u]   ; infinite “distance”

 key[r] 0

 P[r] NIL

 while Q<>NIL do

 uExtract-Min(Q) ; remove closest node

 ; Update children of u so they have a parent and a min key val

 ; the key is the weight between node and parent

 for each vAdj[u] do

 if vQ & w(u,v)<key[v] then

 P[v] u

 key[v] w(u,v)

The inner loop takes O(E) over all iterations of the outer loop.

It is not multiplied by O(V) for the while loop.

The Extract-Min requires O(V) time.

This is O(V2) over the while loop.

Total runtime is then O(V2) + O(E) which is O(V2)

Using a heap our runtime was O(E lg V). Which is worse?

Which is worse for a fully connected graph?

O(V) to initialize array

O(V)

O(V) to search array

O(E) over entire while(Q<>NIL) loop

O(1) direct access via array index

Approximations for Hard Problems

• Greedy algorithms are commonly used to find
approximations for NP-Complete problems

• Use a heuristic to drive the greedy selection
– Heuristic: A common-sense rule that approximates

moves toward the optimal solution

• If our problem is to minimize a function f where
– f(s*) is the value of the exact solution; global minimum

– f(sa) is the value of our approximate solution

– Then we want to minimize the ratio:
• f(sa) / f(s*) such that this approaches 1

• Opposite if maximizing a function

19

Example: Traveling Salesman

Problem
• Cheap greedy solution to the TSP:

– Choose an arbitrary city as the start

– Visit the nearest unvisited city; repeat until all cities have been
visited

– Return to the starting city

• Example graph:

a b

d c

1

2

3
3

1

6

Starting at a: a->b->c->d->a

Total = 10

Optimal: 8 a->b->d->c->a

r(sa) = 10/8 = 1.25

Is this a good approach? What if a->d = 999999?

Greedy TSP

• Our greedy approach is not so bad if the graph adheres
to Euclidean geometry
– Triangle inequality

• d[i,j] ≤ d[i,k] + d[k,j] for any triple cities i,j,k

– Symmetry

• d[i,j] = d[j,i] for any pair of cities i,j

• In our previous example, we couldn’t have a one-way
edge to a city of 999999 where all the other edges are
smaller (if a city is far away, forced to visit it some way)

• It has been proven for Euclidean instances the nearest
neighbor algorithm:
– f(sa) / f(s*) ≤ (lg n + 1) / 2 n ≥ 2 cities

20

Minimum Spanning Tree

Approximation
• We can use a MST to get a better approximation

to the TSP problem

• This is called a twice-around-the-tree algorithm

• We construct a MST and “fix” it up so that it
makes a valid tour
– Construct a MST of the graph corresponding to the

TSP problem

– Starting at an arbitrary vertex, perform a DFS walk
around the MST recording the vertices passed by

– Scan the list of vertices from the previous step and
eliminate all repeat occurrences except the starting
one. The vertices remaining will form a Hamiltonian
circuit that is the output of the algorithm.

MST Approximation to TSP

• Example graph:

a e

b d

12

7

9
9

8

4

c

8

12

6 12

a e

b d

7

8

4

c

6

MST: ab, bc, bd, de

Walk: a, b, c, b, d, e, d, b, a  a, b, c, d, e, a

21

MST Approximation

• Runtime: polynomial (Kruskal/Prim)

• Claim:
– f(sa) < 2f(s*)

– Length of the approximation solution at most twice the length of the
optimal

• Since removing any edge from s* yields a spanning tree T of weight
w(T) that must be ≥ w(T*), the weight of the graph’s MST, we have:
– f(s*) > w(T) ≥ w(T*)

– 2f(s*) > 2w(T*)

• The walk of the MST tree we used to generate the approximate
solution traversed the MST at most twice, so:
– 2w(T*) > f(sa)

• Giving:
– 2f(s*) > 2w(T*) > f(sa)

– 2f(s*) > f(sa)

