Introduction to Graphs: Breadth-First, Depth-Fir st Search, Topological Sort
Chapter 22

Graphs

So far we have examined treesin various forms. Trees are a specific instance of a

construct called agraph. Ingeneral, agraph is composed of edges E and vertices V that

link the nodes together. A graph G is often denoted G=(V ,E) where V isthe set of

vertices and E the set of edges.

Two types of graphs:

1. Directed graphs: G=(V,E) where E is composed of ordered pairs of vertices; i.e. the
edges have direction and point from one vertex to another.

2. Undirected graphs: G=(V,E) where E is composed of unordered pairs of vertices; i.e.
the edges are bidirectional .

Directed Graph:

NS
AN

The degree of avertex in an undirected graph is the number of edges that |eave/enter the
vertex. The degree of avertex in adirected graph is the same,but we distinguish between
in-degree and out-degree. Degree = in-degree + out-degree.

A path fromutovis<u, wl, ...v>and (uwl)(wlw2)(w2,w3)...(W,,V)

The running time of a graph algorithm expressed in terms of E and V, where E = |E| and
V=|V[; eg. G=O(EV) is[E| * |V|

Implement a graph in three ways:

1. Adjacency List

2. Adjacency-Matrix

3. Pointers'memory for each node (actually aform of adjacency list)

Using an Adjacency List: List of pointersfor each vertex

A

2 -

3 - 4

4 - 1

5 - 2 - 4

A

1 - 2 - 3 - 4
2 - 1 - 5

3 - 4 - 1

4 - 1 - 3

5 - 2 - 4

The sum of the lengths of the adjacency listsis 2|E| in an undirected graph, and |E|in a
directed graph.
The amount of memory to store the array for the adjacency list is O(max(V,E))=O(V+E).

Using an Adjacency Matrix:

1 2 3 4 5
1 0 1 1 0 0
2 0 0 0 0 0
3 0 0 0 1 0
4 1 0 0 0 0
5 0 1 0 1 0

1 2 3 4 5
1 0 1 1 1 0
2 1 0 0 0 1
3 1 0 0 1 0
4 1 0 1 0 1
5 0 1 0 1 0

When is using an adjacency matrix agood idea? A bad idea?
The matrix always uses O(v*) memory. Usually easier to implement and perform lookup
than an adjacency list.

Sparse graph: very few edges.
Dense graph: lots of edges. Up to O(v?) edgesif fully connected.

The adjacency matrix is agood way to represent aweighted graph. In aweighted graph,
the edges have weights associated with them. Update matrix entry to contain the weight.
Weights could indicate distance, cost, etc.

Search: The goal isto methodically explore every vertex and every edge; perhaps to do
some processing on each. Will assume adjacency-list representation of the input graph.

Breadth-First-Search (BFS) :

Example 1: Binary Tree. Thisisaspecial case of agraph. The order of search is across
levels. Theroot is examined first; then both children of the root; then the children of
those nodes, etc.

I] I]
SRR N e
Sometimes we can stop the algorithm if we are looking for a particular element, but the
general BFS agorithm runs through every node.

Example 2: directed graph:

1. Pick asource vertex Sto start.

2. Find (or discover) the vertices that are adjacent to S.

3. Pick each child of Sinturn and discover their vertices adjacent to that child.
4. Donewhen all children have been discovered and examined.

Thisresultsin atreethat is rooted at the source vertex S.

Theideaisto find the distance from some Source vertex by expanding the “frontier” of
what we have visited.

Pseudocode: Uses FIFO Queue Q

BFS(s) ; Sisour source vertex
for eachullV - {s} ; Initialize unvisited verticesto o
dod[u] «
ds] <0 ; distance to source vertex isO
Q~{s} : Queue of verticesto visit
while Q<>0do
remove u from Q
for each v 00 Adj[u] do ; Get adjacent vertices
if d[v]= oo

thend[v] — d[u]+1 ;Increment depth
put v onto Q ; Add to nodes to explore

Differences from book:
Not tracking predecessor’svia 7n
Usesinfinity instead of colors (white, gray)
Not using enqueue, dequeue; combine dequeue with head of Q

Example: (thisisthefinal state, start with 0 and infinity as values)

Initially, d[a] is set to 0 and therest to oo.

Q ~ [&.

Remove head: Q — []
children of aarec,b
dic]= o, d[b]= « sod[c] — da+1=1,db] ~da+1=1
Q«[ch]

Remove head: Q — [b]
children of c are ef
de]= «, d[f]= « sod[e] — d[c]+1=2,d[f] ~ d[c]+1=2
Q ~ [bef]

Remove head: Q — [ef]
children of bisf
d[f] <> 0, nothing done with it

Remove head: Q — [f]
childrenof eisd, i, h
d[d]= o, d[i]= o, d[h]= « sod[d] ~ d[i] «d[h] —d[e]+1=3
Q- [fdih]

Remove head: Q — [di h]
childrenof disg
dlg]= ©,sod[g] ~d[d+1=3
Q«[dihg]

Each of these has children that are already has a value less than «, so these will not set
any further values and we are done with the BFS.

Can create atree out of the order we visit the nodes:

Memory required: Need to maintain Q, which contains alist of al fringe vertices we need
to explore.

Runtime: O(V+E) ; O(E) to scan through adjacency list and O(V) to visit each vertex.
Thisis considered linear timein the size of G.

Claim: BFS aways computes the shortest path distance in d[I] between S and vertex I.
We will skip the proof for now.

What if some nodes are unreachable from the source? (reverse c-ef-h edges). What
values do these nodes get?

Depth First Search: Another method to search graphs.

Example 1: DFS on binary tree. Specialized case of more general graph. The order of
the search is down paths and from left to right. The root is examined first; then the left
child of the root; then the left child of this node, etc. until aleaf isfound. At aleaf,
backtrack to the lowest right child and repeat.

Example 2: DFS on directed graph.
1. Start at some source vertex S.

2. Find (or explore) thefirst vertex that is adjacent to S.
3. Repeat with this vertex and explore the first vertex that is adjacent to it.
4. When avertex isfound that has no unexplored vertices adjacent to it then

backtrack up one level

5. Donewhen al children have been discovered and examined.

Resultsin aforest of trees.

Pseudocode:

DFS(s)
for each vertex ulVv
do color[u] — White
time~ 1
for each vertex ulVv
doif color[u]=White
then DFS-Visit(u,time)

DFS-Visit(u,time)
color[u] ~ Gray
dlu] - time
time — timet1
for each v OAdj[u] do
if color[u]=White
then DFS-Visit(v,time)
color[u] ~ Black
fl[u] < time — time+1

Example:
\ 8 @10/11

\ 5/6
@ ‘ \ o/14

216 @ — 12/13

a7 8/15

; not visited
; time stamp

; 1N progress nodes
. d=discover time

: f=finish time

Numbers are Discover/Finish times. We could have different visit times depending on
which edges we pick to traverse during the DFS.

The tree built by this search looks like:
]
Cc

i

o] |n)
] e
4] L]

What if some nodes are unreachable? We still visit those nodesin DFS. Consider if
c-e, f-h links were reversed. Then we end up with two separate trees:

S, ©
@\ 13/18

®\ ‘ 38 @\ 1516

L o || @

Still visit all vertices and get aforest: aset of unconnected graphs without cycles (atree
is a connected graph without cycles).

\ 5/6

Timefor DFS:
O(V?) - DFSloop goes O(V) times once for each vertex (can’t be more than once,
because a vertex does not stay white), and the loop over Adj runs up to V times.

But...

Thefor loop in DFS-Visit looks at every element in Adj once. It ischarged once
per edge for a directed graph, or twice if undirected. A small part of Adj islooked at

during each recursive call but over the entire time the for loop is executed only the same
number of times as the size of the adjacency list whichis © (E).

Sincetheinitia loop takes © (V) time, the total runtimeis © (V+E). Thisis
considered linear in terms of the size of the input adjacency-list representation. So if
there are lots of edges then E dominates the runtime, otherwise V does.

Note: Don't have to track the backtracking/fringe asin BFS since thisis done for
usin the recursive calls and the stack. The stack makes the nodes ordered LIFO. The
amount of storage needed islinear in terms of the depth of the tree.

Types of Edges. There are 4 types. DFS can be modified to classify edges as being of
the correct type:

1. Tree Edge: An edgein adepth-first forest. Edge(u,v) isatree edgeif v wasfirst
discovered from u.

2. Back Edge: An edge that connects some vertex to an ancestor in a depth-first tree.
Self-loops are back edges.

3. Forward Edge: An edge that connects some vertex to a descendant in a depth-first
tree.

4. Cross Edge: Any other edge.

DAG's

Nothing to do with sheep! A DAG isaDirected Acyclic Graph. Thisisadirected graph
that contains no cycles.

Examples:

A directed graph D is acyclic iff aDFS of G yields no back edges.

Proof: Trivial. Acyclic means no back edge because a back edge makes a cycle.
Suppose we have a back edge (u,v). Then v isan ancestor of u in the depth-first forest.
But then there is already a path from v to u and the back edge makes a cycle.

Suppose G hasacycle c. But then DFS of G will have aback edge. Let v be thefirst
vertex in ¢ found by DFS and let u be avertex in c that is connected back tov. Then
when DFS expands the children of u, the vertex v isfound. Sincev isan ancestor of u
the edge (u,v) is aback edge.

—O—0

Topological Sort of a dag

A topological sort of adagisan ordering of al the vertices of G so that if (u,v) isan edge
then uislisted (sorted) beforev. Thisisadifferent notion of sorting than we are used to.
a,b,f,ed,c and f,a,eb,d,c are both topological sorts of the above dag. There may be
multiple sorts; thisis okay since ais not related to f, either vertex can come first.

Main use: Indicate order of events, what should happen first
Algorithm for Topological-Sort:

1. Cal DFS(G) to compute f(v), the finish time for each vertex.
2. Aseach vertex isfinished insert it onto the front of thelist.
3. Returnthelist.

Timeis © (V+E), timefor DFS.

Example: Pizza directed graph

DFS: Start with sauce.
The numbers indicate start/finish time. Weinsert into thelist in reverse order of finish

time.
Crust, Sauce, Sausage, Olives, Oregano, Cheese, Bake
Why does thiswork? Because we don’t have any back edges in adag, so we won't return

to process a parent until after processing the children. We can order by finish times
because a vertex that finishes earlier will be dependent on a vertex that finishes later.

