
1

Review of Graphs

• A graph is composed of edges E and vertices V
that link the nodes together. A graph G is often
denoted G=(V,E) where V is the set of vertices
and E the set of edges.

• Two types of graphs:
– Directed graphs: G=(V,E) where E is composed of

ordered pairs of vertices; i.e. the edges have direction
and point from one vertex to another.

– Undirected graphs: G=(V,E) where E is composed of
unordered pairs of vertices; i.e. the edges are
bidirectional.

Directed Graph

1 2

3 4

5

2

Undirected Graph

1 2

3 4

5

Graph Terminology

• The degree of a vertex in an undirected graph is

the number of edges that leave/enter the vertex.

• The degree of a vertex in a directed graph is the

same, but we distinguish between in-degree and

out-degree. Degree = in-degree + out-degree.

• The running time of a graph algorithm expressed

in terms of E and V, where E = |E| and V=|V|; e.g.

G=O(EV) is |E| * |V|

3

Implementing a Graph

• Implement a graph in three ways:

– Adjacency List

– Adjacency-Matrix

– Pointers/memory for each node (actually a form

of adjacency list)

Adjacency List

• List of pointers for each vertex

1 2

3 4

5

1 2 3

2

3 4

4 1

5 2 4

4

Undirected Adjacency List

1 2

3 4

5

1 2 3 4

2 1 5

3 4 1

4 1 3

5 2 4

Adjacency List

• The sum of the lengths of the adjacency

lists is 2|E| in an undirected graph, and |E| in

a directed graph.

• The amount of memory to store the array

for the adjacency list is

O(max(V,E))=O(V+E).

5

Adjacency Matrix

1 2

3 4

5

1 2 3 4 5

1 0 1 1 0 0

2 0 0 0 0 0

3 0 0 0 1 0

4 1 0 0 0 0

5 0 1 0 1 0

Undirected Adjacency Matrix

1 2

3 4

5

1 2 3 4 5

1 0 1 1 1 0

2 1 0 0 0 1

3 1 0 0 1 0

4 1 0 1 0 1

5 0 1 0 1 0

6

Adjacency Matrix vs. List?

• The matrix always uses Θ(v2) memory. Usually
easier to implement and perform lookup than an
adjacency list.

• Sparse graph: very few edges.

• Dense graph: lots of edges. Up to O(v2) edges if
fully connected.

• The adjacency matrix is a good way to represent a
weighted graph. In a weighted graph, the edges
have weights associated with them. Update matrix
entry to contain the weight. Weights could
indicate distance, cost, etc.

Searching a Graph

• Search: The goal is to methodically explore

every vertex and every edge; perhaps to do

some processing on each.

• For the most part in our algorithms we will

assume an adjacency-list representation of

the input graph.

7

Breadth First Search

• Example 1: Binary Tree. This is a special case of

a graph.

– The order of search is across levels.

– The root is examined first; then both children of the

root; then the children of those nodes, etc.

1

2 3 4

5 6 7 8

Breadth First Search

• Example 2: Directed Graph

• Pick a source vertex S to start.

• Find (or discover) the vertices that are adjacent to S.

• Pick each child of S in turn and discover their vertices
adjacent to that child.

• Done when all children have been discovered and
examined.

• This results in a tree that is rooted at the source vertex S.

• The idea is to find the distance from some Source vertex
by expanding the “frontier” of what we have visited.

8

Breadth First Search Algorithm

• Pseudocode: Uses FIFO Queue Q

9

BFS Example

• Final State shown

a

b

g

c

f

d

e

h

i

0

1

1

3

2

3
3

2

3

0

1

2

3

b

d h i

e

g

f

c

a

Can create tree out of

order we visit nodes

BFS Properties

• Memory required: Need to maintain Q, which contains a
list of all fringe vertices we need to explore, O(V)

• Runtime: O(V+E) ; O(E) to scan through adjacency list
and O(V) to visit each vertex. This is considered linear
time in the size of G.

• Claim: BFS always computes the shortest path distance in
d[i] between S and vertex I. We will skip the proof.

• What if some nodes are unreachable from the source?
(reverse c-e,f-h edges). What values do these nodes get?

10

Depth First Search

• Example 1: DFS on binary tree. Specialized case of more

general graph. The order of the search is down paths and

from left to right.

– The root is examined first; then the left child of the root; then the

left child of this node, etc. until a leaf is found. At a leaf,

backtrack to the lowest right child and repeat.

1

2 5 6

3 4 7 8

Depth First Search

• Example 2: DFS on directed graph.

• Start at some source vertex S.

• Find (or explore) the first vertex that is adjacent to S.

• Repeat with this vertex and explore the first vertex that is
adjacent to it.

• When a vertex is found that has no unexplored vertices
adjacent to it then backtrack up one level

• Done when all children have been discovered and examined.

• Results in a forest of trees.

11

DFS Algorithm

• Pseudocode

 DFS(s)

 for each vertex u V

 do color[u] White ; not visited

 time1 ; time stamp

 for each vertex u V

 do if color[u]=White

 then DFS -Visit(u,time)

 DFS-Visit(u,time)

 color[u] Gray ; in p rogress nodes

 d[u] time ; d=discover time

 time time+1

 for each v Adj[u] do

 if color[u]=White

 then DFS -Visit(v,time)

 color[u] Black

 f[u] time time+1 ; f=finish time

12

DFS Example

• Result (start/finish time):

a

c

b

g

d

e

f

h

i

1/18

2/17

3/16

4/7

5/6

8/15

9/14

10/11

12/13

Tree:

b

g

d i

e

h

f

c

a

DFS Example

• What if some nodes are unreachable? We still visit those

nodes in DFS. Consider if c-e, f-h links were reversed.

Then we end up with two separate trees

– Still visit all vertices and get a forest: a set of unconnected graphs

without cycles (a tree is a connected graph without cycles).

a

c

b

g

d

e

f

h

i

1/10

2/9

3/8

4/7

5/6

14/17

13/18

11/12

15/16

13

DFS Runtime

• O(V2) - DFS loop goes O(V) times once for each vertex
(can’t be more than once, because a vertex does not stay
white), and the loop over Adj runs up to V times.

• But…
– The for loop in DFS-Visit looks at every element in Adj once. It is

charged once per edge for a directed graph, or twice if undirected. A
small part of Adj is looked at during each recursive call but over the
entire time the for loop is executed only the same number of times as
the size of the adjacency list which is (E).

– Since the initial loop takes (V) time, the total runtime is (V+E).

• Note: Don’t have to track the backtracking/fringe as in BFS
since this is done for us in the recursive calls and the stack.
The amount of storage needed is linear in terms of the depth
of the tree.

DAG
• Directed Acyclic Graph

– Nothing to do with sheep

– This is a directed graph that contains no cycles

• A directed graph D is acyclic iff a DFS of G yields no back

edges (an edge to a previously visited node).

– Proof: Trivial. Acyclic means no back edge because a back edge

makes a cycle.

a

b

c

d

e

f

14

DAG

• DAG’s are useful in various situations, e.g.:
– Detection of loops for reference counting / garbage collection

– Topological sort

• Topological sort
– A topological sort of a dag is an ordering of all the vertices of G so

that if (u,v) is an edge then u is listed (sorted) before v. This is a
different notion of sorting than we are used to.

– a,b,f,e,d,c and f,a,e,b,d,c are both topological sorts of the dag
below. There may be multiple sorts; this is okay since a is not
related to f, either vertex can come first.

a

b

c

d

e

f

Topological Sort

• Main use: Indicate order of events, what should
happen first

• Algorithm for Topological-Sort:
– Call DFS(G) to compute f(v), the finish time for each

vertex.

– As each vertex is finished insert it onto the front of the
list.

– Return the list.

• Time is Θ(V+E), time for DFS.

15

Topological Sort Example

• Making Pizza

DFS: Start with sauce.

The numbers indicate start/finish time. We insert into the list in

reverse order of finish time.

Why does this work? Because we don’t have any back edges in a

dag, so we won’t return to process a parent until after processing the

children. We can order by finish times because a vertex that finishes

earlier will be dependent on a vertex that finishes later.

sauce
bake

cheese

sausage

olives

oregano

crust

