
Dynamic Programming  

 

Any recursive formula can be directly translated into recursive algorithms.  However, 

sometimes the compiler will not implement the recursive algorithm very efficiently.  

When this is the case, we must do something to help the compiler by rewriting the 

program to systematically record the answers to subproblems in a table.  This is the basic 

approach behind dynamic programming – all problems must have “optimal substructure.” 

 

Example:  Consider the Fibonacci sequence. 

  Fib(1)=1 

  Fib(2)=1 

  Fib(n)=Fib(n-1)+Fib(n-2) 

  Get Sequence: 1,1,2,3,5,8,12,20,32 … 

 

Implementation: 

 

  Recursive-Fib(n) 

   if n=1 or n=2 then return 1 

   else return Recursive-Fib(n-1)+Recursive-Fib(n-2) 

 

Recursion Tree for Fib(6): 
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We end up recomputing Fib(3) three times, and Fib(4) twice! 

A lot of redundant work recomputed. 

 

Runtime T(n)=T(n-2)+T(n-1) ; grows at same rate as Fib sequence, exponential. 

 

 

A better solution is to remember the previous answers to Fib(x), perhaps in a table, and 

when needed again just pull the answer straight out of the table.  Eliminates much 

recomputation.  In Fib, we really only need to store the last two values, Fib(n-2) and 

Fib(n-1) instead of smaller Fib numbers. 



 

 Faster-Fib(n) 

  if n=1 or n=2 then return 1 

  else 

   last1; next_to_last1; 

   for i1 to n do 

    answer last+next_to_last 

    next_to_last last 

    lastanswer 

  return answer 

 

Faster-Fib runs in O(n) time.  Works in a straightforward manner by remembering the 

previous values.  In this case we only had to remember the last two, but in general we 

may need a table to store previously computed values. 

 

Longest Common Substring 

 

The Longest Common Substring problem is, given two strings s and t, find the longest 

substring (contiguous characters) that is in both s and t.  This has been used to find the 

similarity between two different genes.  Note that this is not the same as the Longest 

Common Subsequence problem, in which characters are not necessarily contiguous.   

However, both can be solved using dynamic programming. 

 

As an example, say that s = "tofoodie” and t = “toody”.   The longest substring in each is 

“ood” at three characters.  There are several substrings of two characters, including “to” 

and “oo” and “od”. 

 

To solve this using dynamic programming, Let D[i,j] be the length of the longest 

matching string suffix between s1..si and a segment of t between t1..tj.  If the ith character 

in s doesn’t match the jth character in t, then D[i,j] is zero to indicate that there is no 

matching suffix.  More formally: 

 

D[i,j] = 0  if s[i]  t[j] Chars don’t match, so no suffix matches 

D[i-1,j-1] +1 if s[i] = t[j] Next chars match, so previous matches+1 

 

If the characters at position i and j do match, then use the number of matches for the 

strings that don’t include characters i and j, then add one. 

 

Here is the initial table that shows D[0,0].  The columns and rows are zero because there 

can be no match if one of the strings is empty. 



 

D[0,0]  T 

(i=1) 

O F O O D I E 

(i=8) 

 0 0 0 0 0 0 0 0 0 

T 

(j=1) 

0         

O 0         

O 0         

D 0         

Y 

(j=5) 

0         

 

Next we fill out D[1,1], D[2,1], D[3,1], etc. to D[8,1].  There is only match at D[1,1] so 

we fill out its cell with the value of D[0,0]+1: 

 

  T 

(i=1) 

O F O O D I E 

(i=8) 

 0 0 0 0 0 0 0 0 0 

T 

(j=1) 

0 1 0 0 0 0 0 0 0 

O 0         

O 0         

D 0         

Y 

(j=5) 

0         

 

Next we fill out the second row, where j = 2.  At the first “O” we add one to D[1,1] and 

then we also have matches at the other O’s which would be matches for an individual 

character. 

 

  T 

(i=1) 

O F O O D I E 

(i=8) 

 0 0 0 0 0 0 0 0 0 

T 

(j=1) 

0 1 0 0 0 0 0 0 0 

O 0 0 2 0 1 1 0 0 0 

O 0         

D 0         

Y 

(j=5) 

0         

 



Next we fill out the third row, where j = 3.  This row shows several submatches, with “O” 

by itself, and also “OO”: 

 

  T 

(i=1) 

O F O O D I E 

(i=8) 

 0 0 0 0 0 0 0 0 0 

T 

(j=1) 

0 1 0 0 0 0 0 0 0 

O 0 0 2 0 1 1 0 0 0 

O 0 0 1 0 1 2 0 0 0 

D 0         

Y 

(j=5) 

0         

 

Continuing for the rest of the table yields: 

 

  T 

(i=1) 

O F O O D I E 

(i=8) 

 0 0 0 0 0 0 0 0 0 

T 

(j=1) 

0 1 0 0 0 0 0 0 0 

O 0 0 2 0 1 1 0 0 0 

O 0 0 1 0 1 2 0 0 0 

D 0 0 0 0 0 0 3 0 0 

Y 

(j=5) 

0 0 0 0 0 0 0 0 0 

 

To find the longest common substrings we just scan through the table and pick out the 

entry with the largest value.  In this case, it is the value 3 and tells us that the previous 

three characters are a match (OOD).  It also gives us the matches of length 2, if we’re 

interested in those, and the matches of length 1. 

 

The runtime is Θ(mn) to fill out the table, where m is the length of s, and n is the length 

of t. 

 



All-Pairs Shortest Path 

 

Say we want to compute the shortest distance between every single pair of vertices.  We 

could just run Dijkstra’s algorithm on every vertex, where a straightforward 

implementation of Dijkstra’s runs in O(V
2
) time, resulting in O(V

3
) runtime overall. 

 

One of Dijkstra’s observations was the relaxation property for computing the shortest 

path.  For the shortest path to v, denoted d[v], the relaxation property states that we can 

set d[v] = min(d[v],d[u]+w(u,v) ).  This formula indicates that the best distance to v is 

either the previously known distance to v, or the result of going from s to some vertex u 

and then directly from u to v. 

 

The dynamic programming algorithm is based upon Dijkstra’s observations. 

 

Set Dk,i,j to be the weight of the shortest path from vertex i to vertex j using only nodes 

0 - k as intermediaries.  

D0,i,j = w[i,j] by definition. 

 

Example: 
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D0 can be represented as a matrix:  shortest path between nodes using 0 intermediates 

(direct links) 

 

D(0) 1 2 3 4 5 

1 0 3 8   -4 

2   0 0 1 7 

3   4 0     
4 2   -5 0   
5       6 0 

 

Observation: The shortest path from vertex i to vertex j that uses only up to k 

intermediate nodes is the shortest path that either does not use vertex k at all, or consists 

of the merging of the two paths vertex i to vertex k and vertex k to vertex j.  This leads to 

the formula: 

 

 Dk,i,j = min {  Dk-1,i,j     or     Dk-1,i,k + Dk-1,k,j } 

   Previous best Previous best to vertex k, then best from k to j 



   

Putting this together into an algorithm, named Floyd-Warshall: 

 

 Floyd-Warshall-All-Pairs-Shortest(G,w) 

  Initialize d[i,j]   w(i,j),   if no such link 

  Initialize path[i,j]    

  for k1 to |V| 

   for i1 to |V| 

    for j1 to |V| 

     if d[i,k]+d[k,j]<d[i,j] then   ; update min 

      d[i,j] d[i,k]+d[k,j] 

      path[i,j] k  ; store to get path 

 

Here we use one matrix and overwrite it for each iteration of k. 

 

Example on above graph: 

 

 

D(k=0) j=1 2 3 4 5 

I=1 0 3 8   -4 

2   0 0 1 7 

3   4 0     
4 2   -5 0   
5       6 0 

 

 

 

Path j=1 2 3 4 5 

I=1           
2           
3           
4           
5           

 

 

Going through shortest path to vertex 1: 

 1,1: d(1,1)+d(1,1)<d(1,1)?  0+0<0? No 

 1,2: d(1,1)+d(1,2)<d(1,2?  0+3<3? No 

 … 

 2,1: d(2,1)+d(1,1)<d(2,1)?  +3<? No 

 2,2: d(2,1)+d(1,2)<d(2,2)?  +3<0? No 

 … 

 4,2: d(4,1)+d(1,2)<d(4,2)?  2+3<? YES!  Update d(4,2) to 5 

 4,5: d(4,1)+d(1,5)<d(4,5)?  2+-4<? YES! Update d(4,5) to –2 



 

 

D(k=1) j=1 2 3 4 5 

I=1 0 3 8   -4 

2   0 0 1 7 

3   4 0     
4 2 5 -5 0 -2 

5       6 0 

 

Path j=1 2 3 4 5 

I=1           
2           
3           
4   1     1 

5           

 

Going through shortest path to vertex 2 (includes going through vertex 1) 

 1,4: d(1,2)+d(2,4)<d(1,4)?  3+1<?  YES , update d(1,4) to 4 

 

Keep going, when k=5: 

D(k=5) j=1 2 3 4 5 

I=1 0 1 -3 2 -4 

2 3 0 -4 1 -1 

3 7 4 0 5 3 

4 2 -1 -5 0 -2 

5 8 5 1 6 0 

 

Path j=1 2 3 4 5 

I=1   3 4 5 1 

2 4   4 2 1 

3 4 3   2 1 

4 4 3 4   1 

5 4 3 4 5   

 

Distance matrix gives the distance of the shortest path from i to j.  By following the node 

in the path matrix, we can find the path to get the shortest path from i to j. 



 

Hard to follow table?  Easier to visualize on graph. 

After k=0: 
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k=1: Update shortest paths going via shortest path to vertex 1. 

This is 42, 45. Note 43 is larger going through 1 than direct edge. 
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4:Inf
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1:Inf
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1:Inf
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k=2: Update shortest paths via shortest path to vertex 2. 

34, 35, 14 
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2:3

3:8

4:4

5:-4

1:Inf

3:Inf

4:1

5:7

1:Inf
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5:11

1:Inf
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3:-5

5:-2
 

k=3: Update shortest paths via shortest path to vertex 3. 

42 
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k=4: Update shortest paths via shortest path to vertex 4. 

(Many updates) 
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k=5: Update shortest paths via shortest path to vertex 5. 

12, 13,14 
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Done!  Have the shortest path between all nodes.  If we maintain pointers to backnodes, 

we can get the actual path as was done with the matrix. 

 
 

Approximate String Matching 

 

Shortly we will examine some algorithms to efficiently determine if a pattern string P 

exists within text string T.  If you have ever used the “Find” feature in a word processor 

to look for a word, then you have just performed string matching. 

 

If the pattern P is m characters long, and the text T is n characters long (we assume 

n>>m) then the naïve string matching algorithm that scans through T, comparing each 

character to one in P, takes O(mn) in the worst case, O(n) on average.  Other techniques 

also run in O(n) time, and we can ensure O(n) worst case time. 

 

But what about approximate matches?  When if the pattern is only off by one character?  

What if the pattern is only missing one character?  All of the exact string matching 

algorithms will say that the string does not match at all.  The approximate string matching 

algorithm has many uses in text processing, language recognition, checking for 

misspelled words, and speech recognition. 

 

Let k be a nonnegative integer.  A k-approximate match is a match of P in T that has at 

most k differences.  The differences may be one of the following three types: 

 

1.  The corresponding characters in P and T are different 

2.  P is missing a character that appears in T 

3.  T is missing a character that appears in P 

 

Example: 

 



P= a n c h o r g e 

T= a    c h o r a e (no space there, just added for illustrating mismatch) 

 

Two mismatches, one at the missing n, another at different g/a.   Naïve algorithm would 

say that every character mismatches except the a! 

 

We can solve this with dynamic programming. 

 

Let D[i,j] be the minimum number of differences between P1..Pi and a segment of T 

between T1..Tj. 

 

There will be a k-approximate match ending at tj for any j such that D[m,j]<=k.  Thus if 

we want to find the first k-approximate match, we can stop as soon as we find an entry 

less than or equal to k in the last row of D.  The rules for computing entries of D consider 

each of the possible types of differences outlined above.   

 

D[i,j] is the minimum of :  

 
1.  If Pi = Tj then D[i-1,j-1] else D[i-1,j-1]+1  If match, then previous best mismatch 

       otherwise mismatch, so add 1 to 

difference 

 

2.  D[i-1,j]+1      Pi missing from T   

   

 

3.  D[i,j-1]+1      Tj missing from P 

 

If building up values of D in a table, very simple lookup with rows to n, length of text, 

and columns m, length of the pattern.  Can fill in top row with zero’s since an empty 

pattern string has no differences in any target text.  The first column is filled with the 

value of m, since a pattern of length m will have m mismatches with an empty text. 

 

Computing D[i,j] can be done only looking at neighbors! 

 

D 0 1 2 3 4 … n 

 0 0 0 0 0 0 0 

1 1       

2 2  D[i-1,j-1] D[i-1,j]    

… …  D[i,j-1] D[i,j]    

M m       

 

 

 

 

 



Example: 

 

  H a v e    a  h s p p y 

 0 0 0 0 0 0 0 0 0 0 0 0 0 

h 1 1 1 1 1 1 1 1 0 1 1 1 1 

a 2 2 1 2 2 2 1 2 1 1 2 2 2 

p 3 3 2 2 3 3 2 2 2 2 1 2 3 

p 4 4 3 3 3 4 3 3 3 3 2 1 2 

y 5 5 4 4 4 4 4 4 4 4 3 2 1 

 

If we were happy with a 3 element mismatch, we could stop once we find a 3 in the last 

row.  The best we can do is a 1 element mismatch. 

 

Runtime?  O(mn) to fill the table.  

Space?  The table D is very large since n will typically be large. 

 BUT we don’t have to store the whole table.  What parts of the table do we need? 

 

Implementation:  Easy to do, left as an exercise for the reader. 

 

 

Knapsack Problem 

 

 Given n items, each with a value v[I] and weight w[I] and knapsack capable of 

supporting weight W, find the largest-valued subset possible to carry in the knapsack. 

 

This solution first solves the problem for knapsacks capable of supporting weight 1, 

weight 2, weight 3, and so on, up until weight W.  Solutions for small knapsacks can be 

used to find solutions for larger knapsacks. 

 

To further divide the problem, the steps outlined above are executed for different 

combinations of items.  First, we find the optimal solution only using item 1.  Then we 

find the optimal solution if we allow the use of item 1 and 2, then item 1,2, and 3, and so 

on up until we reach item n. 



Let’s define best[i,k] to be the maximum value that a knapsack capable of supporting 

weight k can hold, using items 1 through i.  If we sort the items by weight (item 1 is the 

lightest, item n is the heaviest, then we have the following: 

 
 best[i,k] = 0   if i=0 or k=0 (no items or knapsack with  

a hole in it) 

   

      best[i-1,k]  if k<wi   

 

(item is too heavy for knapsack of size k, 

     so the best we can do is the previous best) 

 

       max(best[i-1,k],  if kwi  

               best[i-1,k-wi]+vi) 

 

     (if item fits, the best we can do is either the previous 

     best, or it’s the best value with the knapsack of weight 

     just capable of supporting the item but not including 

the item (k-wi), plus the value of the item,  

whichever is bigger) 

 

We can now construct a table looking something like the following.   We can fill in zeros 

for k=0 and I=0.  The rest must be calculated from the recursive formula.  For example, if 

W=4 and n=4, and v[1]=3, w[1]=2; v[2]=5, w[2]=2; v[3]=6, w[3]=2; v[4]=10, w[4]=5 we 

get the numbers shown below: 

 

best[i,k] k=0 k=1 k=2 k=3 … k=W 

I=0 0 0 0 0 0 0 

I=1 0 0 3 3 3  

I=2 0 0 5 5 8  

I=3 0 0 6 6 11  

… 0 0 6 6 11  

I=n 0      

 

Once the table has been filled in, our answer for the largest weight possible is simply the 

number in the lower right hand corner of the matrix.  To actually find the set of items, we 

can store the last item put into the knapsack into the array as a tuple (best[I,k],last item) 

whenever a cell is updated.  The last item will either be I-1 or I, depending on which 

course of action is taken in the recursive formula.  Our table becomes something like: 



 

best[i,k],last k=0 k=1 k=2 k=3 … k=W 

I=0 (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) 

I=1 (0,0) (0,0) (3, item 1) (3, item 1) (3, item 1)  

I=2 (0,0) (0,0) (5, item 2) (5, item 2) (8, item 2)  

I=3 (0,0) (0,0) (6, item 3) (6, item 3) (6, item 3)  

… (0,0) (0,0) (6, item 3) (6, item 3) (6, item 3)  

I=n (0,0)      

 

To find the optimum set of items S, we start in the lower right hand corner and put that 

item into the knapsack.  Then, we work our way to the left by subtracting off the weight 

of the item and move up until we get to an item different from the one we just removed, 

repeating the process until we end up 0.  In the example above, we’d first put item 3 into 

the knapsack, then move left two spaces since the weight of item 3 is 2, which brings us 

to the column where k=2.  Now we move up to column 2, at which point the item is 

different from item 3.  The item stored is item 2, so we put an item2 into the knapsack, 

subtract 2, and quit since k is now zero. 

 

The time required to build this matrix is clearly O(Wn) and would be very straightforward 

to implement in two FOR loops.  The space required in the straightforward 

implementation is O(Wn) space, but we really only need to keep track of the previous 

row.  If we just overwrite old values in the current row, the algorithm can be implemented 

in O(W) space. 

 


