
Computational Geometry - Divide and Conquer Closest Pair 

 

In computational geometry, two well-known problems are to find the closest pair of 

points and the convex hull of a set of points. 

 

The closest-pair problem, in 2D space, is to find the closest pair of points given a set of n 

points.  Given a list P of n points, P1=(x1,y1), … Pn=(xn,yn) we simply do the following: 

 

 BruteForceClosest(P) 

  min ←  ∞ 

  for i = 1 to n-1 

   for j = i+1 to n do 

    d ←  distance(Pi,Pj)   // Use sqrt(distances squared) 

    if d < min then    

     min ←  d 

     minPoints = (Pi,Pj) 

 

The basic operation is computing the Euclidean distance between all pairs of points and 

requires O(n
2
) runtime.   We could arrive at this value more formally by noting: 
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This requires computing the square root of the sum of squares of the difference between 

the coordinates in the point.  For a large number of points, computing the square root is a 

very expensive operation and can take a long time to run. 

 

In fact, we don’t even need to compute the square root – we can simply ignore the square 

root and compare the values (xi – xj)
2
 + (yi – yj)

2
 themselves, since this value is strictly 

increasing compared to the square root of the value.   This results in the same runtime, 

but would significantly increase the execution speed. 

 

However, we can do better! 

 

Let P1 = (x1, y1), … Pn = (xn, yn) be a set S of n points in the plane, where n, for 

simplicity is a power of two.   We can sort these points in ascending order of their x 

coordinate using a O(nlgn) sorting algorithm such as mergesort. 

 

Next we divide the points into two subsets S1 and S2 where each have n/2 points by 

drawing a line through the median of all points.  We can find the median in constant time 

once the points are sorted.   This is shown below: 

 

 

 

 

 



 

 S1       S2 

 

 

 

 

 

 

 

Next, we recursively find the closest pairs for the left subset S1 and for the right subset 

S2.  If the set consists of just two points, then there is only one solution (that connects 

those two points).  Let d1 and d2 be the smallest distances between pairs of points in S1 

and S2 as shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let d = the minimum of (d1 and d2).  This is not necessarily our answer, because the 

shortest distance between points might connect a pair of points on opposite sides of the 

line.  Consequently, we must compare d to the pairs that cross the line. 

 

We can limit our attention to points in the symmetrical vertical strip of width 2d since the 

distance between any other pair of points is greater than d: 
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For every point between the left dashed line and the symmetrical line in the middle we 

must inspect the distance to points on the right side of the line to the right dashed line.  

However, we only need to look at those points that are within a distance of d from the 

current point.  The key here is that there can be no more than six such points because any 

pair of points in the right half is at least d apart from each other.  The worst case is shown 

below: 

 

 

 

 

 

 

 

 

 

If we maintain an additional list of the points sorted by y coordinate then we can limit the 

points we examine to +/-d in both the x and y direction for these border points.  

 

To perform the step of comparing distances between points on both sides of the line 

requires O(n) runtime.  For each of up to n points we have a constant number (up to 6) of 

other points to examine.  This process is similar to the “merge” time required for 

MergeSort. We then compare the smallest of these distances to d, and choose the smallest 

distance as the solution to the problem.   

 

Our total runtime is then: 

 

 T(n) = 2T(n/2)  + O(n)    ‘ Time to split in half plus line comparison 

 

We can solve this using a variety of methods as O(nlgn).  This is the best we can do as an 

efficiency class, since it has been proven that this problem is Ω(nlgn). 

 

Convex Hull Problem 

 

In this problem, we want to compute the convex hull of a set of points.   What does this 

mean? 

 

• Formally: It is the smallest convex set containing the points.  A convex set is one 

in which if we connect any two points in the set, the line segment connecting 

these points must also be in the set. 

• Informally: It is a rubber band wrapped around the "outside" points.    

 

Here is a picture from: 

http://www.cs.princeton.edu/~ah/alg_anim/version1/ConvexHull.html 

 

d d



It is an applet so you can play with it to see what a convex hull is if you like. 

 

 
 

Theorem:  The convex hull of any set S of n>2 points (not all collinear) is a convex 

polygon with the vertices at some of the points of S. 

 

How could you write a brute-force algorithm to find the convex hull? 

 

In addition to the theorem, also note that a line segment connecting two points P1 and P2 

is a part of the convex hull’s boundary if and only if all the other points in the set lie on 

the same side of the line drawn through these points.  With a little geometry: 

 

 

   

 

 

 

 

 

 

 

 

For all points above the line, ax + by > c, while for all points below the line, ax + by < c.   

Using these formulas, we can determine if two points are on the boundary to the convex 

hull. 

High level pseudocode for the algorithm then becomes: 

 

 for each point Pi 

  for each point Pj where Pj ≠ Pi 

   Compute the line segment for Pi and Pj 

   for every other point Pk where Pk ≠ Pi and Pk ≠ Pj  

    If each Pk is on one side of the line segment, label Pi and Pj 

    in the convex hull 

 

What is the runtime for this algorithm? 

 

(x1,y1)

(x2,y2)

Line defined by a=(y2-y1),  b=(x1-x2),

c=(x1y2 – x2y1)



Let’s look at an expected O(nlgn) algorithm called QuickHull that is somewhat similar to 

Quicksort. 

 

Once again, we have a set of points P located in a 2D plane.  First, sort the points in 

increasing order of their x coordinate.  This can be done in O(nlgn) time. 

 

It should be obvious that the leftmost point P1 and the rightmost point Pn  must belong to 

the set’s convex hull.   Let P1Pn be the line drawn from P1 to Pn.  This line separates P 

into two sets, S1 to the left of the line, and S2 to the right of the line.  (left is counter 

clockwise when connecting the points).  S1 constitutes the boundary of the upper convex 

hull and S2 the boundary of the lower convex hull: 

 

 

 

 

 

 

 

 

 

 

 

 

If we’re lucky, the line exactly separates the points in half, so half are in S1 and half are 

in S2.  In the worst case, all other points are in S1 or S2.  If there is some randomness the 

on general we can expect to cut the problem close to in half as we repeat the process.  

 

Next we’ll find the convex hull for S1.  We can repeat the same exact process to solve S2. 

To find the convex hull for S1, we find the point in S1 that is farthest from the line 

segment P1Pn.  Let’s say this point is Pmax.  If we examine the line segment from P1 to 

Pmax then we can recursively repeat the algorithm for all points to the left of this line (The 

set S11 in the diagram below).  Similarly, if we examine the line segment from Pn to Pmax 

then we can recursively repeat the algorithm for all points to the right of this line (The set 

S12 in the diagram below). 

 

All points inside the triangle can be discarded, since they are in the triangle and can’t be 

part of the convex hull. 
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If we try to find the points in the convex hull for a set with only one point, then that point 

must be in the set.  At this point we have determined the upper convex hull: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If we repeat the process on the lower convex hull we will complete the problem and find 

all of the points for the entire convex hull.    

 

For an animated applet that illustrates this algorithm, see: 

http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html 

 

What is the runtime?  Let’s say that we always split the set of points in half each time we 

draw the line segment from P1 to Pn.  This means we split the problem up into two 

subproblems of size n/2.  Finding the most distant point from the line segment takes O(n) 

time.   This leads to our familiar recurrence relation of: 

 

 T(n) = 2T(n/2) + O(n)      which is O(nlgn). 
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