
Computational Geometry - Divide and Conquer Closest Pair

In computational geometry, two well-known problems are to find the closest pair of

points and the convex hull of a set of points.

The closest-pair problem, in 2D space, is to find the closest pair of points given a set of n

points. Given a list P of n points, P1=(x1,y1), … Pn=(xn,yn) we simply do the following:

 BruteForceClosest(P)

 min ← ∞

 for i = 1 to n-1

 for j = i+1 to n do

 d ← distance(Pi,Pj) // Use sqrt(distances squared)

 if d < min then

 min ← d

 minPoints = (Pi,Pj)

The basic operation is computing the Euclidean distance between all pairs of points and

requires O(n
2
) runtime. We could arrive at this value more formally by noting:

())())(1(1)(2
1

1

1

1 1

1

1 1

ninnCinCCCnT
n

i

n

i

n

ij

n

i

n

ij

θ=−−=−=

=

= ∑∑ ∑∑ ∑

−

=

−

= +=

−

= +=

This requires computing the square root of the sum of squares of the difference between

the coordinates in the point. For a large number of points, computing the square root is a

very expensive operation and can take a long time to run.

In fact, we don’t even need to compute the square root – we can simply ignore the square

root and compare the values (xi – xj)
2
 + (yi – yj)

2
 themselves, since this value is strictly

increasing compared to the square root of the value. This results in the same runtime,

but would significantly increase the execution speed.

However, we can do better!

Let P1 = (x1, y1), … Pn = (xn, yn) be a set S of n points in the plane, where n, for

simplicity is a power of two. We can sort these points in ascending order of their x

coordinate using a O(nlgn) sorting algorithm such as mergesort.

Next we divide the points into two subsets S1 and S2 where each have n/2 points by

drawing a line through the median of all points. We can find the median in constant time

once the points are sorted. This is shown below:

 S1 S2

Next, we recursively find the closest pairs for the left subset S1 and for the right subset

S2. If the set consists of just two points, then there is only one solution (that connects

those two points). Let d1 and d2 be the smallest distances between pairs of points in S1

and S2 as shown below:

Let d = the minimum of (d1 and d2). This is not necessarily our answer, because the

shortest distance between points might connect a pair of points on opposite sides of the

line. Consequently, we must compare d to the pairs that cross the line.

We can limit our attention to points in the symmetrical vertical strip of width 2d since the

distance between any other pair of points is greater than d:

d1

d2

d1

d2

d d

For every point between the left dashed line and the symmetrical line in the middle we

must inspect the distance to points on the right side of the line to the right dashed line.

However, we only need to look at those points that are within a distance of d from the

current point. The key here is that there can be no more than six such points because any

pair of points in the right half is at least d apart from each other. The worst case is shown

below:

If we maintain an additional list of the points sorted by y coordinate then we can limit the

points we examine to +/-d in both the x and y direction for these border points.

To perform the step of comparing distances between points on both sides of the line

requires O(n) runtime. For each of up to n points we have a constant number (up to 6) of

other points to examine. This process is similar to the “merge” time required for

MergeSort. We then compare the smallest of these distances to d, and choose the smallest

distance as the solution to the problem.

Our total runtime is then:

 T(n) = 2T(n/2) + O(n) ‘ Time to split in half plus line comparison

We can solve this using a variety of methods as O(nlgn). This is the best we can do as an

efficiency class, since it has been proven that this problem is Ω(nlgn).

Convex Hull Problem

In this problem, we want to compute the convex hull of a set of points. What does this

mean?

• Formally: It is the smallest convex set containing the points. A convex set is one

in which if we connect any two points in the set, the line segment connecting

these points must also be in the set.

• Informally: It is a rubber band wrapped around the "outside" points.

Here is a picture from:

http://www.cs.princeton.edu/~ah/alg_anim/version1/ConvexHull.html

d d

It is an applet so you can play with it to see what a convex hull is if you like.

Theorem: The convex hull of any set S of n>2 points (not all collinear) is a convex

polygon with the vertices at some of the points of S.

How could you write a brute-force algorithm to find the convex hull?

In addition to the theorem, also note that a line segment connecting two points P1 and P2

is a part of the convex hull’s boundary if and only if all the other points in the set lie on

the same side of the line drawn through these points. With a little geometry:

For all points above the line, ax + by > c, while for all points below the line, ax + by < c.

Using these formulas, we can determine if two points are on the boundary to the convex

hull.

High level pseudocode for the algorithm then becomes:

 for each point Pi

 for each point Pj where Pj ≠ Pi

 Compute the line segment for Pi and Pj

 for every other point Pk where Pk ≠ Pi and Pk ≠ Pj

 If each Pk is on one side of the line segment, label Pi and Pj

 in the convex hull

What is the runtime for this algorithm?

(x1,y1)

(x2,y2)

Line defined by a=(y2-y1), b=(x1-x2),

c=(x1y2 – x2y1)

Let’s look at an expected O(nlgn) algorithm called QuickHull that is somewhat similar to

Quicksort.

Once again, we have a set of points P located in a 2D plane. First, sort the points in

increasing order of their x coordinate. This can be done in O(nlgn) time.

It should be obvious that the leftmost point P1 and the rightmost point Pn must belong to

the set’s convex hull. Let P1Pn be the line drawn from P1 to Pn. This line separates P

into two sets, S1 to the left of the line, and S2 to the right of the line. (left is counter

clockwise when connecting the points). S1 constitutes the boundary of the upper convex

hull and S2 the boundary of the lower convex hull:

If we’re lucky, the line exactly separates the points in half, so half are in S1 and half are

in S2. In the worst case, all other points are in S1 or S2. If there is some randomness the

on general we can expect to cut the problem close to in half as we repeat the process.

Next we’ll find the convex hull for S1. We can repeat the same exact process to solve S2.

To find the convex hull for S1, we find the point in S1 that is farthest from the line

segment P1Pn. Let’s say this point is Pmax. If we examine the line segment from P1 to

Pmax then we can recursively repeat the algorithm for all points to the left of this line (The

set S11 in the diagram below). Similarly, if we examine the line segment from Pn to Pmax

then we can recursively repeat the algorithm for all points to the right of this line (The set

S12 in the diagram below).

All points inside the triangle can be discarded, since they are in the triangle and can’t be

part of the convex hull.

P1

Pn

S1

S2

If we try to find the points in the convex hull for a set with only one point, then that point

must be in the set. At this point we have determined the upper convex hull:

If we repeat the process on the lower convex hull we will complete the problem and find

all of the points for the entire convex hull.

For an animated applet that illustrates this algorithm, see:

http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html

What is the runtime? Let’s say that we always split the set of points in half each time we

draw the line segment from P1 to Pn. This means we split the problem up into two

subproblems of size n/2. Finding the most distant point from the line segment takes O(n)

time. This leads to our familiar recurrence relation of:

 T(n) = 2T(n/2) + O(n) which is O(nlgn).

P1

Pn

S1

S2

Pmax

S11

S12

P1

Pn

S1

S2

S12

