
1

Context Free Grammars

Context Free Languages (CFL)

• The pumping lemma showed there are languages that are not
regular
– There are many classes “larger” than that of regular languages

– One of these classes are called “Context Free” languages

• Described by Context-Free Grammars (CFG)
– Why named context-free?

– Property that we can substitute strings for variables regardless of
context (implies context sensitive languages exist)

• CFG’s are useful in many applications
– Describing syntax of programming languages

– Parsing

– Structure of documents, e.g.XML

• Analogy of the day:
– DFA:Regular Expression as Pushdown Automata : CFG

2

CFG Example

• Language of palindromes

– We can easily show using the pumping lemma that the

language L = { w | w = wR } is not regular.

– However, we can describe this language by the

following context-free grammar over the alphabet

{0,1}:
P � ε

P � 0

P � 1

P � 0P0

P � 1P1

Inductive definition

More compactly: P � ε | 0 | 1 | 0P0 | 1P1

Formal Definition of a CFG

• There is a finite set of symbols that form the strings, i.e. there is
a finite alphabet. The alphabet symbols are called terminals
(think of a parse tree)

• There is a finite set of variables, sometimes called non-
terminals or syntactic categories. Each variable represents a
language (i.e. a set of strings).

– In the palindrome example, the only variable is P.

• One of the variables is the start symbol. Other variables may
exist to help define the language.

• There is a finite set of productions or production rules that
represent the recursive definition of the language. Each
production is defined:

1. Has a single variable that is being defined to the left of the production

2. Has the production symbol �

3. Has a string of zero or more terminals or variables, called the body of the
production. To form strings we can substitute each variable’s
production in for the body where it appears.

3

CFG Notation

• A CFG G may then be represented by these

four components, denoted G=(V,T,R,S)

– V is the set of variables

– T is the set of terminals

– R is the set of production rules

– S is the start symbol.

Sample CFG

1. E�I // Expression is an identifier

2. E�E+E // Add two expressions

3. E�E*E // Multiply two expressions

4. E�(E) // Add parenthesis

5. I� L // Identifier is a Letter

6. I� ID // Identifier + Digit

7. I� IL // Identifier + Letter

8. D � 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 // Digits

9. L � a | b | c | … A | B | … Z // Letters

Note Identifiers are regular; could describe as (letter)(letter + digit)*

4

Recursive Inference

• The process of coming up with strings that satisfy
individual productions and then concatenating them
together according to more general rules is called recursive
inference.

• This is a bottom-up process

• For example, parsing the identifier “r5”
– Rule 8 tells us that D � 5

– Rule 9 tells us that L � r

– Rule 5 tells us that I�L so I�r

– Apply recursive inference using rule 6 for I�ID and get
• I � rD.

• Use D�5 to get I�r5.

– Finally, we know from rule 1 that E�I, so r5 is also an expression.

Recursive Inference Exercise

• Show the recursive inference for arriving at

(x+y1)*y is an expression

1. E�I

2. E�E+E

3. E�E*E

4. E�(E)

5. I� L

6. I� ID

7. I� IL

8. D � 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

9. L � a | b | c | … A | B | … Z

5

Derivation

• Similar to recursive inference, but top-down instead of
bottom-up
– Expand start symbol first and work way down in such a way that it

matches the input string

• For example, given a*(a+b1) we can derive this by:
– E ⇒ E*E ⇒ I*E ⇒ L*E ⇒ a*E ⇒ a*(E) ⇒ a*(E+E) ⇒ a*(I+E)
⇒ a*(L+E) ⇒ a*(a+E) ⇒ a*(a+I) ⇒ a*(a+ID) ⇒ a*(a+LD) ⇒
a*(a+bD) ⇒ a*(a+b1)

• Note that at each step of the productions we could have
chosen any one of the variables to replace with a more
specific rule.

Multiple Derivation

• We saw an example of ⇒ in deriving
a*(a+b1)

• We could have used ⇒* to condense the
derivation.

– E.g. we could just go straight to E ⇒* E*(E+E)
or even straight to the final step
• E ⇒* a*(a+b1)

• Going straight to the end is not recommended on a
homework or exam problem if you are supposed to
show the derivation

6

Leftmost Derivation

• In the previous example we used a derivation

called a leftmost derivation. We can specifically

denote a leftmost derivation using the subscript

“lm”, as in:

⇒lm or ⇒*lm

• A leftmost derivation is simply one in which we

replace the leftmost variable in a production body

by one of its production bodies first, and then

work our way from left to right.

Rightmost Derivation

• Not surprisingly, we also have a rightmost
derivation which we can specifically denote
via:

• ⇒rm or ⇒*rm

• A rightmost derivation is one in which we
replace the rightmost variable by one of its
production bodies first, and then work our
way from right to left.

7

Rightmost Derivation Example

• a*(a+b1) was already shown previously using a

leftmost derivation.

• We can also come up with a rightmost derivation,

but we must make replacements in different order:

– E ⇒rm E*E ⇒rm E * (E) ⇒rm E*(E+E) ⇒rm E*(E+I)

⇒rm E*(E+ID) ⇒rm E*(E+I1) ⇒rm E*(E+L1) ⇒rm

E*(E+b1) ⇒rm E*(I+b1) ⇒rm E*(L+b1) ⇒rm E*(a+b1)

⇒rm I*(a+b1) ⇒rm L*(a+b1) ⇒rm a*(a+b1)

Left or Right?

• Does it matter which method you use?

• Answer: No

• Any derivation has an equivalent leftmost

and rightmost derivation. That is, A ⇒* α.

iff A ⇒*lm α and A ⇒*rm α.

8

Language of a Context Free

Grammar

• The language that is represented by a CFG

G(V,T,P,S) may be denoted by L(G), is a Context

Free Language (CFL) and consists of terminal

strings that have derivations from the start symbol:

L(G) = { w in T | S ⇒*G w }

• Note that the CFL L(G) consists solely of

terminals from G.

CFG Exercises

 Give a CFG for the CFL: {0n1n | n ≥ 1 }

 Give a CFG for the CFL: {aibjck | i ≠ j or j ≠ k }

9

Ambiguous Grammars

• A CFG is ambiguous if
one or more terminal
strings have multiple
leftmost derivations from
the start symbol.
– Equivalently: multiple

rightmost derivations, or
multiple parse trees.

• Examples
– E� E+E | E*E

– E+E*E can be parsed as
• E⇒E+E ⇒E+E*E

• E ⇒E*E ⇒E+E*E

E

E + E

E * E

E

E * E

E + E

Ambiguous Grammar

• Is the following grammar ambiguous?

– S�AS | ε

– A�A1 | 0A1 | 01

10

Removing Ambiguity

• No algorithm can tell us if an arbitrary CFG is ambiguous in
the first place
– Halting / Post Correspondence Problem

• Why care?
– Ambiguity can be a problem in things like programming languages

where we want agreement between the programmer and compiler over
what happens

• Solutions
– Apply precedence

– e.g. Instead of: E� E+E | E*E

– Use: E� T | E + T, T� F | T * F

• This rule says we apply + rule before the * rule (which means we multiply
first before adding)

Parse Trees

• A parse tree is a top-down representation of a
derivation
– Good way to visualize the derivation process

– Will also be useful for some proofs coming up!

• If we can generate multiple parse trees then that
means that there is ambiguity in the language
– This is often undesirable, for example, in a programming

language we would not like the computer to interpret a
line of code in a way different than what the programmer
intends.

– But sometimes an unambiguous language is difficult or
impossible to avoid.

11

Sample Parse Tree

• Sample parse tree for the palindrome CFG

for 1110111:

P � ε | 0 | 1 | 0P0 | 1P1
1

1

1

0

P 1

P 1

P 1

P

Sample Parse Tree

• Using a leftmost derivation
generates the parse tree for
a*(a+b1)

• Does using a rightmost
derivation produce a different
tree?

• The yield of the parse tree is the
string that results when we
concatenate the leaves from left
to right (e.g., doing a leftmost
depth first search).
– The yield is always a string that is

derived from the root and is
guaranteed to be a string in the
language L.

a

L

I

E *

(

a

L

I

E +

b

L

I

1

D

I

E

E)

E

E

12

Applications of Context Free

Grammars

Introduction to XML

Example 1: Parsing Programming

Languages

• Consider an arbitrary expression
– Arbitrary nesting of operators

– Parenthesis balancing

– Requires CFG

• YACC – Yet Another Compiler Compiler
– Unix program often used to generate a parser for a

compiler

– Output is code that implements an automaton capable
of parsing the defined grammar

– Also mechanisms to perform error handling, recovery

13

YACC
• Definitions

– Variables, types, terminals, non-terminals

• Grammar Productions
– Production rules

– Semantic actions corresponding to rules

• Typically used with lex
– Lexical rules � lex � C program with yylex()

• yylex processes tokens

– Grammar rules, yylex � yacc � C program with yyparse()
• yyparse processes grammar of tokens

YACC Example Productions

Exp : ID {…}

| Exp ‘+’ Exp {…}

| Exp ‘*’ Exp {…}

| ‘(‘ Exp ‘)’ {…}

;

Id : ‘a’ {…}

| ‘b’ {…}

| Id ‘a’ {…}

| Id ‘b’ {…}

| Id ‘0’ {…}

| Id ‘1’ {…}

;

{…} contains semantic

actions.

Grammar matches:

E�ID | E+E | E*E | (E)

ID�a | b | ID a | ID b |

ID 0 | ID 1

14

Example YACC Semantics

• | Exp ‘+’ Exp {$$ = $1 + $2}

• | Exp ‘*’ Exp {$$ = $1 * $2}

Example 2: XML - What is it?

• XML = eXtensible Markup Language

• Technology for web applications - 1997

• World Wide Web Consortium (W3C)

standard that lets you create your own tags.

– Implications for business-to-business

transactions on the web.

15

HTML and XML

• Why do we need

XML? We have

HTML today

• All browsers read

HTML

• Designed for reading

by Humans

• Example on the left

HTML Rendered

• HTML “rendered” as

shown to the left

• Tags describe how the

HTML should be

displayed, or

presented

• Tags don’t describe

what anything is!

16

Sample XML File

• Same data, but in an

XML format

• Humans, but particularly

computers, can

understand the meaning

of the tags

• If we want to know the

last name, we know

exactly where to look!

Displaying XML

• XML can be rendered,

or displayed, just like

the HTML page if we

so desire

• Rendering instructions

aren’t stored in the

same file, but in a

separate XSL file -

exTensible Stylesheet

Language

17

Second Rendering

• With a different style

sheet, we can render

the data in an entirely

different way

• Same content, just

different presentation

Second example: Song Lyrics in

HTML

<H1>Hot Cop</H1>

<i> by Jacques Morali, Henri Belolo, and Victor Willis</i>

Producer: Jacques Morali

Publisher: PolyGram Records

Length: 6:20

Written: 1978

Artist: Village People

18

Song Lyrics in XML

<SONG>

<TITLE>Hot Cop</TITLE>

<COMPOSER>Jacques Morali</COMPOSER>

<COMPOSER>Henri Belolo</COMPOSER>

<COMPOSER>Victor Willis</COMPOSER>

<PRODUCER>Jacques Morali</PRODUCER>

<PUBLISHER>PolyGram Records</PUBLISHER>

<LENGTH>6:20</LENGTH>

<YEAR>1978</YEAR>

<ARTIST>Village People</ARTIST>

</SONG>

Song XSL Style Sheet for

Formatting

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">

<xsl:template match="/">

<html> <head><title>Song</title></head>

<body><xsl:value-of select="."/></body>

</html>

</xsl:template>

<xsl:template match="TITLE">

<h1><xsl:value-of select="."/></h1>
</xsl:template>

</xsl:stylesheet>

Style Sheets can be quite complex; most translate to HTML

19

Third Example - News Story

• News article in XML

format using the

“News” DTD

(Document Type

Definition – the

definition for the

allowable tags)

Different Display using Different

Style Sheets for Different Apps
• Desktop rendering

using IE

• Palmtop rendering

• Different output

needed using different

devices, but the same

underlying content

20

Example Applications

• Web Pages

– XHTML is XML with an HTML DTD

• Mathematical Equations

• Music Notation

• Vector Graphics

• Metadata

Mathematical Markup Language

21

Vector Graphics

• Vector Markup Language (VML)

– Internet Explorer 5.0+

– Microsoft Office 2000+

• Scalable Vector Graphics (SVG)
<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg width="100%" height="100%" version="1.1"

xmlns="http://www.w3.org/2000/svg">

<rect x="20" y="20" rx="20" ry="20" width="250"

height="100"

style="fill:red;stroke:black;stroke-width:5;opacity:0.5"/>

</svg>

File Formats, In-House, Other

• Microsoft Office

• Many Web API’s

• RSS uses XML

• Core technology all over the net

22

Summary of XML Benefits

• Can now send structured data across the web

– Semantics and Syntax (Presentation), separated

• Business to Business Transactions

– Using a published XML format (DTD), we can specify

orders, items, requests, and pretty much anything we

want and display them using any XSL

– Intelligent Agents can now understand what data

means, instead of complex algorithms and heuristics to

guess what the data means

• e.g. Shopping Agents

• Smart Searches using XML queries, not keywords

Where do the XML Tags Come

From?

• You get to invent the tags!

• Tags get defined in the DTD (Document

Type Definition)

• HTML has fixed tags and presentation

meaning only

• XML has user-defined tags and semantic

meaning separated from presentation

meaning

23

HTML is a fixed standard. XML lets

everyone define the data structures they

need.

DTD - Defining Tags
• A Document Type Definition describes the elements

and attributes that may appear in a document

• a list of the elements, tags, attributes, and entities
contained in a document, and their relationship to
each other - consider it to be a template

• XML documents must be validated to ensure they
conform to the DTD specs
– Ensures that data is correct before feeding it into a

program

– Ensure that a format is followed

– Establish what must be supported

– E.g., HTML allows non-matching <p> tags, but
this would be an error in XML

24

Sample DTD and XML

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href=“greeting.xsl"?>

<!DOCTYPE GREETING SYSTEM "greeting.dtd">

<GREETING>

Hello World!

</GREETING>

<!ELEMENT GREETING (#PCDATA)>

greeting.dtd

greeting.xml

Greeting XSL

<?xml version="1.0"?>

<!--XSLT 1.0 -->

<xsl:transform

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:output method="xml" omit-xml-declaration="yes"/>

<xsl:template match="/">

<H2><xsl:value-of select="greeting"/></H2>

</xsl:template>

</xsl:transform>

greeting.xsl

25

Family Tree - Derived from SGML

(Standard Gen. Markup Lang)

SGML

HTML XML

DTD DSSSL

XML-DTD XSL

DOMCSS

::::

:: ::

Framework

Content Formatting

Programming

Page display

RDF RDF-Schema::

XML Usage
Text Encoding Initiative (TEI)

Channel Definition Format, CDF (Based on XML)

W3C Document Object Model (DOM), Level 1

Specification

Web Collections using XML

Meta Content Framework Using XML (MCF)

XML-Data

Namespaces in XML

Resource Description Framework (RDF)

The Australia New Zealand Land Information Council

(ANZLIC) - Metadata

Alexandria Digital Library Project

XML Metadata Interchange Format (XMI) - Object

Management Group (OMG)

Educom Instructional Management Systems Project

Structured Graph Format (SGF)

Legal XML Working Group

Web Standards Project (WSP)

HTML Threading - Use of HTML in Email

XLF (Extensible Log Format) Initiative

WAP Wireless Markup Language Specification

HTTP Distribution and Replication Protocol (DRP)

Chemical Markup Language

Bioinformatic Sequence Markup Language (BSML)

BIOpolymer Markup Language (BIOML)

Virtual Hyperglossary (VHG)

Weather Observation Definition Format (OMF)

Open Financial Exchange (OFX/OFE)

Open Trading Protocol (OTP)

Signed XML (W3C)

Digital Receipt Infrastructure Initiative

Digest Values for DOM (DOMHASH)

Signed Document Markup Language (SDML)

FIXML - A Markup Language for the FIX Application

Message Layer

Bank Internet Payment System (BIPS)

OpenMLS - Real Estate DTD Design

Customer Support Consortium

XML for the Automotive Industry - SAE J2008

X-ACT - XML Active Content Technologies Council

Mathematical Markup Language

OpenTag Markup

Metadata - PICS

CDIF XML-Based Transfer Format

Synchronized Multimedia Integration Language (SMIL)

Precision Graphics Markup Language (PGML)

Vector Markup Language (VML)

WebBroker: Distributed Object Communication on the

Web

Web Interface Definition Language (WIDL)

XML/EDI - Electronic Data Interchange

XML/EDI Repository Working Group

European XML/EDI Pilot Project

EEMA EDI/EC Work Group - XML/EDI

DISA, ANSI ASC X12/XML

Information and Content Exchange (ICE)

CommerceNet Industry Initiative

eCo Framework Project and Working Group

vCard Electronic Business Card

iCalendar XML DTD

26

More XML Usage
Telecommunications Interchange Markup (TIM, TCIF/IPI)

Encoded Archival Description (EAD)

UML eXchange Format (UXF)

Translation Memory eXchange (TMX)

Scripting News in XML

Coins: Tightly Coupled JavaBeans and XML Elements

DMTF Common Information Model (CIM)

Process Interchange Format XML (PIF-XML)

Ontology and Conceptual Knowledge Markup

Languages

Astronomical Markup Language

Astronomical Instrument Markup Language (AIML)

GedML: [GEDCOM] Genealogical Data in XML

Newspaper Association of America (NAA) - Standard for

Classified Advertising Data

News Industry Text Format (NITF)

Java Help API

Cold Fusion Markup Language (CFML)

Document Content Description for XML (DCD)

XSchema

Document Definition Markup Language (DDML)

WEBDAV (IETF 'Extensions for Distributed Authoring

and Versioning on the World Wide Web')

Tutorial Markup Language (TML)

Development Markup Language (DML)

VXML Forum (Voice Extensible Markup Language

Forum)

VoxML Markup Language

SABLE: A Standard for Text-to-Speech Synthesis

Markup

Java Speech Markup Language (JSML)

SpeechML

XML and VRML (Virtual Reality Modeling Language)

XML for Workflow Management [NIST]

SWAP - Simple Workflow Access Protocol

Theological Markup Language (ThML)

XML-F ('XML for FAX')

Extensible Forms Description Language (XFDL)

Broadcast Hypertext Markup Language (BHTML)

IEEE LTSC XML Ad Hoc Group

Open Settlement Protocol (OSP) - ETSI/TIPHON

WDDX - Web Distributed Data Exchange

Common Business Library (CBL)

Open Applications Group - OAGIS

Schema for Object-oriented XML (SOX)

XMLTP.Org - XML Transfer Protocol

The XML Bookmark Exchange Language (XBEL)

Simple Object Definition Language (SODL) and XMOP Service

XML-HR Initiative - Human Resources

ECMData - Electronic Component Manufacturer Data Sheet

Inventory Specification

Bean Markup Language (BML)

Chinese XML Now!

MOS-X (Media Object Server - XML)

FLBC (Formal Language for Business Communication) and

KQML

ISO 12083 XML DTDs

Extensible User Interface Language (XUL)

Commerce XML (cXML)

Process Specification Language (PSL) and XML

XML DTD for Phone Books

Using XML for RFCs

Schools Interoperability Framework (SIF)

XML Query Language

• Several proposals for query language

– XQuery 1.0 latest?

• Modeling after existing OODB QLs

– inline construction of XML from XML

– APIs for script usage

WHERE <book>

<publisher><name>Addison-Wesley</></>

<title> $t</>

<author> $a</>

</> IN "www.a.b.c/bib.xml"

CONSTRUCT <result>

<author> $a</>

<title> $t</>

</>

27

Programming XML
• XML defines an object/attribute data model

• DOM (Document Object Model) is the API
for programs to act upon object/attribute
data models

– DHTML is DOM for HTML

• interface for operating on the document as
paragraphs, images, links, etc

• Programmed with JavaScript, VBScript, modern
IDEs often construct much of this for you

– DOM-XML is DOM for XML

• interface for operating on the “document” as objects
and parameters

Style Sheets / DTD / XML

• The actual XML, Style Sheets, and the DTD

(Document Type Definition) could be made

by hand, but more typically are created with

the help of XML Tools

– Many tools on the market

– IBM alphaworks

– Visual Studio

– oXygen

28

Lots of people using it…but

• Not useful if major parties don’t agree on a

XML format; without adoption everyone

has their own format

• Downside: Web full of gobbledygook that

only a select few understand

• Even though your browser may parse XML,

it may not understand what it really means

• Effect: Everyone can invent their own

language on the web

– Tower of Babel on the web, or Balkanization

Quick Quiz

• What’s a DTD?

• Difference between XML and HTML?

• What’s a eXtended Style Sheet?

• How can XML make searching easier?

29

Summary

• XML specifies semantics, not just

presentation

– Semantics separate from Presentation language

– Users can define their own tags/languages

• Greatly simplifies machine understanding

of data

– Agents easier to implement

– Business to business transactions

• International, standard format to share and

exchange knowledge

Back to Context-Free Grammars…

• HTML can be described by classes of text
– Text is any string of characters literally interpreted (i.e.

there are no tags, user-text)

– Char is any single character legal in HTML tags

– Element is
• Text or

• A pair of matching tags and the document between them, or

• Unmatched tag followed by a document

– Doc is sequences of elements

– ListItem is the tag followed by a document followed
by

– List is a sequence of zero or more list items

30

HTML Grammar

• Char � a | A | …

• Text � ε | Char Text

• Doc � ε | Element Doc

• Element � Text | Doc | <P>

Doc | List

• ListItem � Doc

• List � ε | ListItem List

XML’s DTD

• The DTD lets us define our own grammar

• Context-free grammar notation, also using regular

expressions

• Form of DTD:

<!DOCTYPE name-of-DTD [

list of element definitions

]>

• Element definition:

– <!ELEMENT element-name (description of element)>

31

Element Description

• Element descriptions are regular expressions

• Basis
– Other element names

– #PCDATA, standing for any TEXT

• Operators
– | for union

– , for concatenation

– * for Star

– ? for zero or one occurrence of

– + for one or more occurrences of

PC Specs DTD
<!DOCTYPE PcSpecs [

<!ELEMENT PCS (PC*)>

<!ELEMENT PC (MODEL, PRICE, PROC, RAM, DISK+)>

<!ELEMENT MODEL (#PCDATA)>

<!ELEMENT PRICE (#PCDATA)>

<!ELEMENT PROC (MANF, MODEL, SPEED)>

<!ELEMENT MANF (#PCDATA)>

<!ELEMENT SPEED (#PCDATA)>

<!ELEMENT RAM (#PCDATA)>

<!ELEMENT DISK (HARDDISK | CD | DVD)>

<!ELEMENT HARDDISK (MANF, MODEL, SIZE)>

<!ELEMENT SIZE (#PCDATA)>

<!ELEMENT CD (SPEED)>

<!ELEMENT DVD (SPEED)>

]>

32

Pc Specs XML Document
<PCS>

<PC>

<MODEL>4560</MODEL>

<PRICE>$2295</PRICE>

<PROCESSOR>

<MANF>Intel</MANF>

<MODEL>Pentium</MODEL>

<SPEED>4Ghz</SPEED>

</PROCESSOR>

<RAM>8192</RAM>

<DISK>

<HARDDISK>

<MANF>Maxtor</MANF>

<MODEL>Diamond</MODEL>

<SIZE>2000Gb</SIZE>

</HARDDISK>

</DISK>

<DISK><CD><SPEED>32x</SPEED></CD></DISK>

</PC>

<PC> ….. </PC>

</PCS>

Examples with Style Sheet

• Hello world with Greeting DTD

• Product / Inventory List

33

Prod.XML
<?xml version="1.0"?><!--prod.xml-->

<?xml-stylesheet type="text/xsl" href="prodlst.xsl"?>

<!DOCTYPE sales [

<!ELEMENT sales (products, record)> <!--sales information-->

<!ELEMENT products (product+)> <!--product record-->

<!ELEMENT product (#PCDATA)> <!--product information-->

<!ATTLIST product id ID #REQUIRED>

<!ELEMENT record (cust+)> <!--sales record-->

<!ELEMENT cust (prodsale+)> <!--customer sales record-->

<!ATTLIST cust num CDATA #REQUIRED> <!--customer number-->

<!ELEMENT prodsale (#PCDATA)> <!--product sale record-->

<!ATTLIST prodsale idref IDREF #REQUIRED>

]>

<sales>

<products><product id="p1">Packing Boxes</product>

<product id="p2">Packing Tape</product></products>

<record><cust num="C1001">

<prodsale idref="p1">100</prodsale>

<prodsale idref="p2">200</prodsale></cust>

<cust num="C1002">

<prodsale idref="p2">50</prodsale></cust>

<cust num="C1003">

<prodsale idref="p1">75</prodsale>

<prodsale idref="p2">15</prodsale></cust></record>

</sales>

ProdLst.XSL

<?xml version="1.0"?><!--prodlst.xsl-->

<!--XSLT 1.0 -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:template match="/"> <!--root rule-->

<html><head><title>Record of Sales</title></head>

<body><h2>Record of Sales</h2>

<xsl:apply-templates select="/sales/record"/>

</body></html></xsl:template>

<xsl:template match="record"> <!--processing for each record-->

<xsl:apply-templates/></xsl:template>

<xsl:template match="prodsale"> <!--processing for each sale-->

<xsl:value-of select="../@num"/> <!--use parent's attr-->

<xsl:text> - </xsl:text>

<xsl:value-of select="id(@idref)"/> <!--go indirect-->

<xsl:text> - </xsl:text>

<xsl:value-of select="."/></xsl:template>

</xsl:stylesheet>

34

ProdTbl.xsl
<?xml version="1.0"?><!--prodtbl.xsl-->

<!--XSLT 1.0 -->

<html xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xsl:version="1.0">

<head><title>Product Sales Summary</title></head>

<body><h2>Product Sales Summary</h2>

<table summary="Product Sales Summary" border="1">

<!--list products-->

<th align="center">

<xsl:for-each select="//product">

<td><xsl:value-of select="."/></td>

</xsl:for-each></th>

<!--list customers-->

<xsl:for-each select="/sales/record/cust">

<xsl:variable name="customer" select="."/>

<tr align="right"><td><xsl:value-of select="@num"/></td>

<xsl:for-each select="//product"> <!--each product-->

<td><xsl:value-of select="$customer/prodsale

[@idref=current()/@id]"/>

</td></xsl:for-each>

</tr></xsl:for-each>

<!--summarize-->

<tr align="right"><td>Totals:</td>

<xsl:for-each select="//product">

<xsl:variable name="pid" select="@id"/>

<td><i><xsl:value-of

select="sum(//prodsale[@idref=$pid])"/></i>

</td></xsl:for-each></tr>

</table>

</body></html>

Product Rendering Results

