
1

Binomial Heaps

Chapter 19

Heap

• Under most circumstances you would use

a “normal” binary heap

• Except some algorithms that may use

heaps might require a “Union” operation

– How would you implement “Union” to merge

two binary heaps?

2

Heap Runtime

Binomial Heaps

The binomial tree Bk is an ordered tree

defined recursively.

B0

B1

Bo

Bo

B2

B1

B1

3

Binomial Trees

B3

B2

B2

B4

B3

B3

Binomial Trees

In general:

Bk

Bk-1

Bk-1

Properties for tree Bk:

• There are 2k nodes

• The height of the tree is k

• The number of nodes at depth i for i = 0…k is

• The root has degree k which

is greater than any other node

k

i
= -------k!

i!(k-i)!

4

Binomial Heaps

A binomial heap H is a set of binomials trees that

satisfies the following binomial-heap properties:

1. Each binomial tree in H obeys the min-heap

property.

2. For any nonnegative integer k, there is at most

one binomial tree in H whose root has degree k.

3. Binomial trees will be joined by a linked list of

the roots

Binomial Heap Example

An n node binomial heap consists of at most Floor(lg n) + 1 binomial trees.

5

Binomial Heaps
How many binary bits are needed to count the nodes in any given

Binomial Tree? Answer: k for Bk, where k is the degree of the root.

9

7 8

6

4

3 2

1
B3 3 bits

000

111

110

101

100

011001

010

4

B0 0 bits

4

2

0

1

B1 1 bits

4

3 2

1

00

01 10

11

B2 2 bits

Binomial Heaps

Representing a Binomial Heap with 14 nodes

There are 14 nodes, which is 1110 in binary. This also can be

written as <1110>, which means there is no B0, one B1, one B2

and one B3. There is a corresponding set of trees for a heap of

any size!

<1110> 4

2

4

3 2

1

9

8 7

6

4

3 9

1Head

6

Node Representation

Binomial Heaps

z

Sibling

Sibling

Sibling

Sibling

7

Create New Binomial Heap

• Just allocate an object H, where

head[H] = NIL

• Θ(1) runtime

Binomial Min-Heap

• Walk across roots, find minimum

• O(lg n) since at most lg n + 1 trees

4

2

4

3 2

1

9

8 7

6

6

4 9

3Head

8

Binomial-Link(y,z)1. p[y]  z

2. sibling[y]  child[z]

3. child[z]  y

4. degree[z]  degree[z] + 1

Link binomial trees with the same

degree. Note that z, the second

argument to BL(), becomes the parent,

and y becomes the child.

zy

z

y

y

z

z

y
z becomes the

parent of y

Θ(1) Runtime

Binomial-Heap-Union(H1, H2)

1. H  Binomial-Heap-Merge(H1, H2)

This merges the root lists of H1 and H2 in increasing order of

root degree

2. Walk across the merged root list, merging binomial

trees of equal degree. If there are three such trees in

a row only merge the last two together (to maintain

property of increasing order of root degree as we walk

the roots)

Runtime: Merge time plus Walk Time: O(lg n)

Concept illustrated on next slide; skips some implementation details of

cases to track which pointers to change

9

Starting with the following two binomial heaps:

69

58 19

18

93

8060

Merge root lists, but now we

have two trees of same

degree

53

32 63

2

69

58 19

18

93

8060

53

32 63

2

Combine trees of same degree

using binomial link, make smaller

key the root of the combined tree

53

32 63

2

69

58 19

1893

8060

Binomial-Heap-Insert(H)

To insert a new node, simple create a new Binomial
Heap with one node (the one to insert) and then
Union it with the heap

1. H’  Make-Binomial-Heap()

2. p[x]  NIL

3. child[x]  NIL

4. sibling[x]  NIL

5. degree[x]  0

6. head[H’]  x

7. H  Binomial-Heap-Union(H, H’)

Runtime: O(lg n)

10

Binomial-Heap-Extract-Min(H)

With a min-heap, the root has the least value in the heap.

Notice that if we remove the root from the figure below, we are left with four

heaps, and they are in decreasing order of degree. So to extract the min we

create a root list of the children of the node being extracted, but do so in

reverse order. Then call Binomial-Heap-Union(..)

Part of original heap showing

binomial tree with minimal root.

Broken into separate Binomial

Trees after root’s extraction

Reversal of

roots, and

combining into

new heap

H

Runtime: Θ(lg n)

Heap Decrease Key

• Same as decrease-key for a binary heap

– Move the element upward, swapping values,

until we reach a position where the value is 

key of its parent

Runtime: Θ(lg n)

11

Heap Delete Key

• Set key of node to delete to –infinity and

extract it:

Runtime: Θ(lg n)

