Building lexical and syntactic
analyzers

Chapter 3

Syntactic sugar causes cancer of the semicolon.
A. Perlis

Chomsky Hierarchy

» Four classes of grammars, from simplest to most
complex:

— Regular grammar
+ What we can express with a regular expression

— Context-free grammar
» Equivalent to our grammar rules in BNF

— Context-sensitive grammar
— Unrestricted grammar

* Only the first two are used in programming
languages

Lexical Analysis

Purpose: transform program representation
Input: printable ASCII (or Unicode) characters
Output: tokens (type, value)

Discard: whitespace, comments

Definition: A token is a logically cohesive
sequence of characters representing a single
symbol.

Sample Tokens

Identifiers
Literals: 123, 5.67, X', true
Keywords: bool char ...
Operators: + - */ ...
Punctuation: ;, () {}
Whitespace: space tab
Comments

/I any-char* end-of-line
End-of-line
End-of-file

Lexical Phase

« Why a separate phase for lexical analysis? Why

not make it part of the concrete syntax?

— Simpler, faster machine model than parser

— 75% of time spent in lexer for non-optimizing compiler
— Differences in character sets

— End of line convention differs
* Macs: cr (ASCII 13)
» Windows: cr/If (ASCII 13/10)
+ Unix: nl (ASCII 10)

Categories of Lexical Tokens

|dentifiers

Literals

Includes Integers, true, false, floats, chars
Keywords

bool char else false float if int main true while
Operators
=||&&==l=<<=>>=+-"/%![]

Punctuation
;T (0)

Regular Expression Review

RegExpr Meaning
X a character x
\x an escaped character, e.g., \n
{ name } a reference to a name
MIN Mor N
MN M followed by N
M* zero or more occurrences of M
M+ One or more occurrences of M
M? Zero or one occurrence of M
[aeiou] the set of vowels
[0-9] the set of digits
. Any single character

Clite Lexical Syntax

Category Definition
anyChar [-~]
Letter [a-zA-Z]
Digit [0-9]
Whitespace [\t]
Eol \n
Eof \004

Category Definition

Keyword bool | char | else | false | float |
if | int | main | true | while
Identifier {Letter}({Letter} | {Digit})*
integerLit {Digit}+
floatLit {Digit}+\.{Digit}+
charLit {anyChar}’
Category Definition
Operator= | || | && | == |!=| < | <= | >|
>< |+ [- 1>/ 1tIT]]
Separator N I I O N T O

Comment // ({anyChar} |{Whitespace})*{eol}

Finite State Automaton

 Given the regular expression definition of lexical
tokens, how do we design a program to
recognize these sequences?

* One way: build a deterministic finite automaton
— Set of states: representation — graph nodes
— Input alphabet + unique end symbol
— State transition function
— Labelled (using alphabet) arcs in graph
— Unique start state
— One or more final states

Example : DFA for Identifiers

L - I | =i F

An input is accepted if, starting with the start state,
the automaton consumes all the input and halts in a
final state.

An input is accepted if, starting with the start state,
the automaton consumes all the input and halts in a
final state.

Overview of DFA’s for Clite

g |
/ . i
- - -
T
id
! e
- } -
d
d _—
- -
d
L : e
- -
L L 5 L L
- -
=y
-
*
L L
& &

Lexer Code

» Parser calls lexer whenever it needs a new
token.

» Lexer must remember where it left off.
— Class variable for the current char (ch)

» Greedy consumption goes 1 character too far

— Consider: (foo<bar) with no whitespace after the
foo. If we consume the < at the end of identifying foo,
we lose the first char of the next token

* peek function
» pushback function
* no symbol consumed by start state

From Design to Code

private char ch = ' %;
public Token next ()
{
do {
switch (ch)
{
}
} while (true);
} » Loop only exited when a token
is found
* Loop exited via a return
statement.

» Variable ch must be global.
Initialized to a space character.

Translation Rules

» We need to translate our DFA into code
— Relatively straightforward process

— Traversing an arc from A to B:
* If labeled with x: test ch == x

* If unlabeled: else/default part of if/switch. If only
arc, no test need be performed.

» Get next character if A is not start state

Translation Rules

* A node with an arc to itself is a do-while.

;“\
1 _<\I I-IH;_-\'I
S S
+ Otherwise the move is translated to a if/switch:
— Each arc is a separate case.

— Unlabeled arc is default case.

» A sequence of transitions becomes a sequence
of translated statements.

» A complex diagram is translated by boxing
its components so that each box is one
node.

— Translate each box using an outside-in

strategy.
AT aae
Q" Q" WU

Some Code — Helper Functions

private boolean isLetter(char c) {
return ch >= ‘a’ && ch <= ‘z’ ||
ch >= ‘A’ && ch <= 'Z’;

}

private String concat (String set) {
StringBuffer r = new StringBuffer (“”);
do {
r.append (ch) ;
ch = nextChar();
} while (set.indexOf(ch) >= 0);
return r.toString();

}

10

Code

+ See next() method in the Lexer.java
source code

» Code is in the zip file for homework #1

Lexical Analysis of Clite in
Java

public class TokenTester ({
public static void main (String[] args) {

Lexer lex = new Lexer (args[0]);
Token t;

int 1 = 1;

do

{
t = lex.next();
System.out.println(i+" Type: "+t.type ()

+"\tValue: "+t.value());

i++;

} while (t != Token.eofTok);

}

}

11

Result of Analysis (seen before)

Result of Lexical Analysis:

Type: Int Value: int

Type: Main Value: main

Type: LeftParen Value: (// Simple Program

Type: RightParen Value: int main() {
Type: LeftBrace Value: int x;

Type: Int Value: int x = 3;

Type: Identifier Value:

Type: Semicolon Value:
Type: Identifier Value:
Type: Assign Value:
Type: IntLiteral Value:
Type: Semicolon Value:
Type: RightBrace Value:
Type: Eof Value: <<EOF>>

~

0o JoUld WDN PR
-~

H R RERRP O
B WNh RO
WX X

Syntactic Analysis

« After the lexical tokens have been generated the
next phase is syntactic analysis, i.e. parsing

» Purpose is to recognize source structure
* Input: tokens
» Output: parse tree or abstract syntax tree

« A recursive descent parser is one in which each
nonterminal in the grammar is converted to a
function which recognizes input derivable from
the nonterminal.

12

Parsing Preliminaries

« Skipping, some more detail in the book

» To prep the grammar for easier parsing it is
converted into a left dependency grammar:
— Discover all terminals recursively
— Turn regular expressions into BNF style grammar

— For example:
A-sx{y}z becomes

A—->xAz
A—e| yA

Program Structure Consists Of:

+ Expressions:x +2*y
+ Assignment Statement: z=x+2 "y
* Loop Statements:
while (i < n) afi++] = 0;
» Function definitions
* Declarations: int i;

Partial here;
+ Assignment — ldentifier = Expression skipping &4, ||,
« Expression — Term { AddOp Term } etc.
+ AddOp - + | -
« Term — Factor { MulOp Factor }
+ MulOp — * |/
» Factor — [UnaryOp] Primary
« UnaryOp - -
* Primary — |dentifier | Literal | (Expression)

13

Recursive Descent Parser

» One algorithm for generating an abstract
syntax tree
— Input: lexical, concrete, outputs abstract
representation

» Lexical data a stream of tokens, comes from the
Lexer we saw earlier

— This algorithm is top down
— Based on an EBNF concrete syntax

Overview of Recursive Descent
Process for Assignment

TokenStream input Assignment A (abstract syntax tree)

zZ=x+2 *y;

Assignment
D
(nextToken
Identifier
/t oken \ /
[=]

Assignment assignment () { .. }
Expression expression () { .. |}
Term term () { ..}
Factor factor () { .. }
main ()
token = input.nextToken();
A = assignment();
}

- i

Algorithm for Writing a Recursive
Descent Parser from EBNF

For each nonterminal symbol A and set of rules of the form A — :

W —

Add a new method definition with A as its return type.

Create a new object of class A, say x.

FFor each member vy of the sentential form e,

a. if vy is a nonterminal, call the method associated with y and assign the result to
an appropriate field within x.

. if vy is a terminal, check that the value of that token is identical with v and, if so,
call the nextToken method. Otherwise the token is in error.

If contains a series of symbols that is repeated (indicated by *), insert an appropri-

ate while loop that accommodates any number of repetitions of that series.

If there is more than one rule of the form A — , insert appropriate if .. . else

statements that distinguishes the alternatives.

Return x.

Implementing Recursive
Descent

« Say we want to write Java code to parse Assignment
(EBNF, Concrete Syntax):
— Assignment > Identifier = Expression;
— From steps 1-2, we add a method for an Assignment object:

private Assignment assignment () {
... /' will fill in code here momentarily to parse assignment
return new Assignment(target, source);

This is a method named assignment in the Parser.java

file... separate from the Assignment class defined in
AbstractSyntax.java

15

Implement Assignment

» According to the syntax, assignment should find an
identifier, an operator (=), an expression, and a

separator (;)
— So these are coded up into the method!

private Assignment assignment () {
// Assignment --> Identifier = Expression ;
Variable target = new Variable
(match (Token.Identifier));
match (Token.Assign) ;
Expression source = expression();
match (Token.Semicolon) ;
return new Assignment (target, source);

Helper Methods

» Match: retrieves next token or displays a syntax error.
» Syntax Error: Displays error and terminates

private void match (TokenType t) {

String value = token.value();
if (token.type().equals(t))

token = lexer.next ();
else

error (t);
return value;

}

private void error (TokenType tok) {
System.err.println("Syntax error: expecting: " + tok

+ "; saw: " + token);
System.exit (1) ;

16

Expression Method

» Assignment method relies on Expression
method
— Expression - Conjunction { || Conjunction }*

private Expression expression () {

// Conjunction --> Equality { && Equality }

Expression e = equality();

while (token.type() .equals(TokenType.And)) {
Operator op = new Operator (token.value());
token = lexer.next();
Expression term2 = equality();
e = new Binary(op, e, term2);

}
return e;

}

Need loop for possible multiple &&’s.
Conjunction method must return expr if there are no &&’s

More Expression Methods

private Expression factor () {
// Factor --> [UnaryOp] Primary
if (isUnaryOp()) {
Operator op = new Operator (match(token.type()));

Expression term = primary();
return new Unary(op, term);
}

else return primary();

17

More Expression Methods

private Expression primary () {
// Primary —--> Identifier | Literal | (Expression)
// | Type (Expression)
Expression e = null;

if (token.type() .equals(TokenType.Identifier)) {
Variable v = new Variable (match(TokenType.Identifier));
e = v;
} else if (isLiteral()) {
e = literal();
} else if (token.type().equals(TokenType.LeftParen)) {
token = lexer.next();
e = expression();
match (TokenType.RightParen) ;
} else if (isType()) |
Operator op = new Operator (match(token.type()));
match (TokenType.LeftParen);
Expression term = expression();
match (TokenType.RightParen) ;
e = new Unary(op, term);
} else error("Identifier | Literal | (| Type");
return e;

Finished Program

- Finishing recursive descent parser will be
available as Parser.java

— Extending it in some way will be left as an exercise ©

» What we’ve done in the resulting program
incorporates both the concrete and abstract
syntax
— Concrete syntax used to define the methods, classes,

sequence of tokens

— Abstract syntax is created by setting the class
member variables to the appropriate data values as
the program is parsed

18

