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Introduction to Parallel 

Computing

Parallel Computing

• Traditionally, software is written for a 

uniprocessor machine

– Executed by a single computer with one CPU

– Instructions are executed sequentially, one after the 

other

• In CS221 we briefly touched upon how this is not quite true; 

there is pipelining and today’s uniprocessors generally have 

multiple execution units and try to run many instructions in 

parallel

• Parallel computing is the simultaneous use of 

multiple resources to run a program
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Where are the computing 

resources?

• The compute resources can include: 

– A single computer with multiple execution 

units

– A single computer with multiple processors

– A network of computers

– A combination of the above

• Our Beowulf cluster, 

beancounter.math.uaa.alaska.edu, is in this 

category

Cheap Parallel Processing in the 

Future
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Applying Parallel Programming

• To be effectively applied, the problem should 

generally have the following properties:

– Broken apart into discrete pieces of work that can be 

solved simultaneously

– Execute multiple program instructions at any moment 

in time

– Solved in less time with multiple compute resources 

than with a single compute resource

– Is a problem that runs too long on a uniprocessor or is 

too large for a uniprocessor (e.g. memory constraints)

Typical Parallel Programming 

Problems

• Motivated by scientific problems, numerical simulation, 

“supercomputer” problems:

– weather and climate

– chemical and nuclear reactions

– biological, human genome

– geological, seismic activity

http://aeff.uaa.alaska.edu
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Flynn’s Taxonomy

SISD
Single Instruction Single 

Data

SIMD
Single Instruction 

Multiple Data

MISD
Multiple Instruction 

Single Data

MIMD
Multiple Instruction 

Multiple Data

MIMD
• Multiple Instruction: every processor may be executing a different 
instruction stream 

• Multiple Data: every processor may be working with a different data 
stream 

• Execution can be synchronous or asynchronous

• Examples: most current supercomputers, networked parallel 
computer "grids" and “clusters” and multi-processor SMP computers
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Some Parallel Computer 

Architectures

• Shared Memory

– Multiple processors share the same global memory

– Change made to memory by one CPU visible by all 

others

Shared Memory Architecture

• Uniform Memory Access (UMA)

– Most commonly represented today by Symmetric 

Multiprocessor (SMP) machines 

– Identical processors 

– Equal access and access times to memory 

– Sometimes called CC-UMA - Cache Coherent UMA. 

Cache coherent means if one processor updates a 

location in shared memory, all the other processors 

know about the update. Cache coherency is 

accomplished at the hardware level. 
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Shared Memory Architecture

• Non-Uniform Memory Access (NUMA)

– Often made by physically linking two or more SMPs 

– One SMP can directly access memory of another 

SMP 

– Not all processors have equal access time to all 

memories 

– Memory access across link is slower 

– If cache coherency is maintained, then may also be 

called CC-NUMA - Cache Coherent NUMA 

Shared Memory Architecture

• Advantages
– Global address space provides a user-friendly programming 
perspective to memory 

– Data sharing between tasks is both fast and uniform due to the 
proximity of memory to CPUs 

• Disadvantages
– Lack of scalability between memory and CPUs. Adding more 
CPUs can geometrically increases traffic on the shared memory-
CPU path, and for cache coherent systems, geometrically 
increase traffic associated with cache/memory management. 

– Programmer responsibility for synchronization constructs that 
insure "correct" access of global memory. 

– Expense: it becomes increasingly difficult and expensive to 
design and produce shared memory machines with ever 
increasing numbers of processors. 
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Some Parallel Computer 

Architectures
• Distributed Memory

– Processors have their own local memory. Memory addresses in 
one processor do not map to another processor, so there is no 
concept of global address space across all processors. 

– Because each processor has its own local memory, it operates 
independently. Changes it makes to its local memory have no 
effect on the memory of other processors. Hence, the concept of 
cache coherency does not apply. 

Distributed Memory

• When a processor needs access to data in 
another processor, it is usually the task of 
the programmer to explicitly define how 
and when data is communicated. 
Synchronization between tasks is likewise 
the programmer's responsibility. 

• The network "fabric" used for data transfer 
varies widely, though it can can be as 
simple as Ethernet. 
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Distributed Memory

• Advantages: 
– Memory is scalable with number of processors. Increase the 
number of processors and the size of memory increases 
proportionately. 

– Each processor can rapidly access its own memory without 
interference and without the overhead incurred with trying to 
maintain cache coherency. 

– Cost effectiveness: can use commodity, off-the-shelf processors 
and networking. 

• Disadvantages: 
– The programmer is responsible for many of the details 
associated with data communication between processors. 

– It may be difficult to map existing data structures, based on 
global memory, to this memory organization. 

– Non-uniform memory access (NUMA) times 

Combination

• The largest and fastest machines today 

use a combination of shared and 

distributed architectures
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Parallel Programming Models

• Data Parallel

– Like SIMD approach

• Shared Memory

• Threads

• Message Passing

Shared Memory Programming

• In the shared-memory programming model, tasks share 
a common address space, which they read and write 
asynchronously. 
– Various mechanisms such as locks and semaphores may be 
used to control access to the shared memory. 

– An advantage of this model from the programmer's point of view 
is that the notion of data "ownership" is lacking, so there is no 
need to specify explicitly the communication of data between 
tasks. Program development can often be simplified. 

– An important disadvantage in terms of performance is that it 
becomes more difficult to understand and manage data locality. 

• No common implementation of shared memory 
programming exists today beyond a handful of CPU’s
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Thread Model

• A single process can have multiple, concurrent execution paths

• A thread's work may best be described as a subroutine within the 
main program. Any thread can execute any subroutine at the same 
time as other threads. 

• Threads communicate with each other through global memory 
(updating address locations). 

– Requires synchronization constructs to insure that more than one thread 
is not updating the same global address at any time. 

Studied in OS class

Message Passing

• Characteristics:   

– A set of tasks that use their own local memory during 

computation. Multiple tasks can reside on the same physical 

machine as well across an arbitrary number of machines. 

– Tasks exchange data through communications by sending and 

receiving messages. 

– Data transfer usually requires cooperative operations to be 

performed by each process. For example, a send operation must 

have a matching receive operation. 
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Message Passing Programming

• From a programming perspective, message passing 
implementations commonly comprise a library of 
subroutines that are imbedded in source code. The 
programmer is responsible for determining all parallelism.

• History:
– A variety of message passing libraries have been available since 
the 1980s, but no standard

– In 1992, the MPI Forum was formed with the primary goal of 
establishing a standard interface for message passing 
implementations.

– Part 1 of the Message Passing Interface (MPI) was released in 
1994. Part 2 (MPI-2) was released in 1996. 

• MPI is now the "de facto" industry standard for message 
passing, replacing virtually all other message passing 
implementations used for production work.   MPI-2 full 
implementation rare.

Constructing Parallel Code

• Hard to do

• Fully Automatic Approach – parallelizing compiler
– The compiler analyzes the source code and identifies 
opportunities for parallelism. 

– The analysis includes identifying inhibitors to parallelism and 
possibly a cost weighting on whether or not the parallelism would 
actually improve performance. 

– Loops (do, for) loops are the most frequent target for automatic 
parallelization. 

• Programmer Directed 
– Using "compiler directives" or possibly compiler flags, the 
programmer explicitly tells the compiler how to parallelize the 
code. 

– Generally much better performance than automatic

– May be able to be used in conjunction with some degree of 
automatic parallelization also. 
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Designing Parallel Programs

• First step:  Understand the problem
– If you are starting with a serial program, this 
necessitates understanding the existing code also. 

– Before spending time in an attempt to develop a 
parallel solution for a problem, determine whether or 
not the problem is one that can actually be 
parallelized. 

– Example of Parallelizable Problem: Calculate the 
potential energy for each of several thousand 
independent conformations of a molecule. When 
done, find the minimum energy conformation. 

– Example of a Non-parallelizable Problem: Calculation 
of the Fibonacci series (1,1,2,3,5,8,13,21,...) by use of 
the formula: F(k + 2) = F(k + 1) + F(k) 

Understanding the Problem

• Identify the program's hotspots: 
– Know where most of the real work is being done. The majority of 
scientific and technical programs usually accomplish most of their work 
in a few places. 

– Profilers and performance analysis tools can help here 

– Focus on parallelizing the hotspots and ignore those sections of the 
program that account for little CPU usage. 

• Identify bottlenecks in the program 
– Are there areas that are disproportionately slow, or cause parallelizable 
work to halt or be deferred? 

– May be possible to restructure the program or use a different algorithm 
to reduce or eliminate unnecessary slow areas 

• Identify inhibitors to parallelism. One common class of inhibitor is 
data dependence, as demonstrated by the Fibonacci sequence 
above. 

• Investigate other algorithms if possible. This may be the single most 
important consideration when designing a parallel application. 
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Designing Parallel Programs

• One of the first steps in designing a 
parallel program is to break the problem 
into discrete "chunks" of work that can be 
distributed to multiple tasks. This is known 
as decomposition or partitioning.

• There are two basic ways to partition 
computational work among parallel tasks: 
domain decomposition and functional 
decomposition

Domain Decomposition

• the data associated with a problem is 

decomposed. Each parallel task then 

works on a portion of the data. 
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Domain Decomposition

• Sample ways to split up arrays

Functional Decomposition

• The focus is on the computation that is to be performed 

rather than on the data manipulated by the computation. 

The problem is decomposed according to the work that 

must be done. Each task then performs a portion of the 

overall work. 

e.g. climate model:

The atmosphere model generates wind 

velocity data that are used by the ocean 

model, the ocean model generates sea 

surface temperature data that are used 

by the atmosphere model, etc.
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Hybrid Decomposition

• In many cases it may be possible to 

combine the functional and domain 

decomposition approaches. 

• E.g. weather model

– Spatial area to process

– Functions to process

Communications

• The need for communications between tasks depends 
upon your problem: 

• You DON'T need communications
– Some types of problems can be decomposed and executed in 
parallel with virtually no need for tasks to share data. 
• E.g. inverting an image 

• These types of problems are often called embarrassingly parallel
because they are so straight-forward. Very little inter-task 
communication is required. 

• You DO need communications
– Most parallel applications are not quite so simple, and do require 
tasks to share data with each other. 
• E.g. a 3-D heat diffusion problem requires a task to know the 
temperatures calculated by the tasks that have neighboring data. 
Changes to neighboring data has a direct effect on that task's data. 



16

Important Communications Factors

• Cost of communications
– Inter-task communication virtually always implies 
overhead. 

– Machine cycles and resources that could be used for 
computation are instead used to package and 
transmit data. 

– Communications frequently require some type of 
synchronization between tasks, which can result in 
tasks spending time "waiting" instead of doing work. 

– Competing communication traffic can saturate the 
available network bandwidth, further aggravating 
performance problems. 

Important Communications Factors

• Consider latency and bandwidth of your network
– Sending many small messages can cause latency to dominate 
communication overheads. Often it is more efficient to package 
small messages into a larger message, thus increasing the 
effective communications bandwidth. 

• Synchronous vs. asynchronous communications 
– Requires some type of "handshaking" between tasks that are 
sharing data. This can be explicitly structured in code by the 
programmer, or it may happen at a lower level unknown to the 
programmer. 

– Often referred to as blocking communications 

– Asynchronous communications allow tasks to transfer data 
independently from one another. For example, task 1 can prepare 
and send a message to task 2, and then immediately begin doing 
other work. When task 2 actually receives the data doesn't matter. 

– Asynchronous communications are often referred to as non-
blocking communications.  Interleaving computation with 
communication is the single greatest benefit for using 
asynchronous communications. 
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Scope of Communications
• Knowing which tasks must communicate with each other 

is critical during the design stage of a parallel code. 

– Point-to-point - involves two tasks with one task acting as the 

sender/producer of data, and the other acting as the 

receiver/consumer. 

– Collective - involves data sharing between more than two tasks, 

which are often specified as being members in a common group, 

or collective. Some common variations: 

Synchronization

• Barrier
– Usually implies that all tasks are involved 

– Each task performs its work until it reaches the barrier. It then stops, or 
"blocks". 

– When the last task reaches the barrier, all tasks are synchronized. 

– What happens from here varies. Often, a serial section of work must be 
done. In other cases, the tasks are automatically released to continue 
their work. 

• Lock / semaphore
– Can involve any number of tasks 

– Typically used to serialize (protect) access to global data or a section of 
code. Only one task at a time may use (own) the lock / semaphore / flag. 

– Other tasks can attempt to acquire the lock but must wait until the task 
that owns the lock releases it. 

• Synchronous communication operations
– Involves only those tasks executing a communication operation 

– E.g. only send after ack received
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Load Balancing

• Load balancing refers to the practice of distributing work 

among tasks so that all tasks are kept busy all of the 

time. It can be considered a minimization of task idle 

time. 

• Load balancing is important to parallel programs for 

performance reasons. 

Achieving Load Balance

• Equally partition the work each task receives
– Data, loop iterations similar for each CPU

• Use dynamic work assignment
– Certain classes of problems result in load imbalances 
even if data is evenly distributed among tasks: 
• Sparse arrays - some tasks will have actual data to work on 
while others have mostly "zeros". 

• N-body simulations – where most of the particles are in one 
place 

– May be helpful to use a scheduler - task pool
approach. As each task finishes its work, it queues to 
get a new piece of work. 

– It may become necessary to design an algorithm that 
detects and handles load imbalances as they occur 
dynamically within the code. 
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Granularity of Parallelism

• Ratio of computation to communication

• Fine-grained
– Small amounts of computational work are done 
between communication events 

– Low computation to communication ratio 

– Facilitates load balancing 

– Bad on communication overhead

• Coarse-grained
– Relatively large amounts of computational work 
are done between communication/synchronization 
events 

– High computation to communication ratio 

– Implies more opportunity for performance increase 

– Harder to load balance efficiently 

Parallel Array Example

• Independent calculations on 2D array

Serial code:

for i = 1 to n

for j = 1 to m

a[i,j] = fcn(a[i,j])
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One Solution

• Master process

– Initializes array

– Splits array into rows for each worker process

– Sends info to worker processes

– Wait for results from each worker

• Worker process receives info, performs its 
share of computation and sends results to 
master. 

• Master displays the results

Solution Pseudocode

Find out if I am MASTER or WORKER

if I am MASTER 

{

initialize the array

send each WORKER info on part of array it owns

send each WORKER its portion of initial array  

receive from each WORKER results 

}  

else if I am WORKER

{

receive from MASTER info on part of array I own

receive from MASTER my portion of initial array

for i = myfirstrow to mylastrow

for j = 1 to m

a[i,j] = fcn(a[i,j])

send MASTER results , i.e.  a[myfirstrow,*] to a[mylastrow,*]

}
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Parallel Example

• 1D wave on a string

• The amplitude on the y axis 

– i as the position index along the x axis 

– node points imposed along the string 

– update of the amplitude at discrete time steps. 

Wave Solution

• The entire amplitude array is partitioned and distributed as 
subarrays to all tasks. Each task owns a portion of the total array. 

• Load balancing: all points require equal work, so the points should 
be divided equally 

• A block decomposition would have the work partitioned into the 
number of tasks as chunks, allowing each task to own mostly 
contiguous data points. 

• Communication need only occur on data borders. The larger the 
block size the less the communication. 

“ghost” data
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MPI

• Common implementation

– Cluster of machines connected 

by some network

– Could be the Internet, but 

generally some type of high-

speed LAN

• Share same file system

• One machine designated as the 

Master, others are slaves or 

workers

MPI

• Program skeleton:

#include<mpi.h>

void main(int argc, char *argv[]) 

{

int rank,size; 

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

MPI_Comm_size(MPI_COMM_WORLD,&size);

/* ... your code here ...*/

MPI_Finalize();

}

Like an array, 

separate instance on

each processor

Get process ID

starting at 0

Get number of

processes
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MPI Hello, World

#include <stdio.h>

#include "mpi.h"

main(int argc, char **argv)

{

int my_rank;

int p;

int source;

int dest;

int tag=50;

char message[100];

MPI_Status status;

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &p);

MPI Hello, World
if (my_rank == 1) {

printf("I'm number 1!\n");

sprintf(message,"Hello from %d!", my_rank);

dest=0;

MPI_Send(message,strlen(message)+1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

}

else if (my_rank !=0) {

sprintf(message,"Greetings from %d!", my_rank);

dest=0;

MPI_Send(message,strlen(message)+1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

}

else {

for (source =1; source <p; source++)   {

MPI_Recv(message, 100, MPI_CHAR, source, tag, MPI_COMM_WORLD,&status);

printf("%s\n",message);

}

}

MPI_Finalize();

return 0;

}
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MPI Reduce Example

#include <stdio.h>

#include <mpi.h>

int main (int argc, char *argv[]) {

int rank, value, recv, min, root;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

value=rank+1;

root=0;

MPI_Reduce(&value,&recv,1,MPI_INT,MPI_SUM,root,MPI_COMM_WORLD);

if (rank==root) printf("Sum=%d\n",recv);

MPI_Barrier(MPI_COMM_WORLD);

MPI_Reduce(&value,&min,1,MPI_INT,MPI_MIN,root,MPI_COMM_WORLD);

if (rank==root) printf("Min=%d\n",min);

MPI_Finalize();

return 0;

}

Beancounter examples

• Heatbugs

• Genetic Algorithm



25

References

• http://www.llnl.gov/computing/tutorials/parallel_comp/

• http://www.osc.edu/hpc/training/mpi/raw/fsld.002.html

• http://www.math.uaa.alaska.edu/~afkjm/cluster/beancou

nter/


