
2/4/2013

1

Semantic Analysis

Chapter 4

Role of Semantic Analysis

• Following parsing, the next two phases of the

"typical" compiler are

– semantic analysis

– (intermediate) code generation

• The principal job of the semantic analyzer is

to enforce static semantic rules

– constructs a syntax tree (usually first)

– information gathered is needed by the code

generator

2/4/2013

2

Role of Semantic Analysis

• There is considerable variety in the extent
to which parsing, semantic analysis, and
intermediate code generation are
interleaved

• A common approach interleaves
construction of a syntax tree with parsing
(no explicit parse tree), and then follows
with separate, sequential phases for
semantic analysis and code generation

Attribute Grammars

• Both semantic analysis and (intermediate) code
generation can be described in terms of
annotation, or "decoration" of a parse or
syntax tree

• ATTRIBUTE GRAMMARS provide a formal
framework for decorating such a tree

• Consider the following LR (bottom-up)
grammar for arithmetic expressions
made of constants, with precedence and
associativity:

2/4/2013

3

Attribute Grammars

E  E + T

E  E – T

E  T

T  T * F

T  T / F

T  F

F  - F

F  (E)

F  const

• This says nothing about what the program

MEANS

Attribute Grammars

• We can turn this into an attribute grammar as

follows (similar to Figure 4.1):
E  E + T E1.val = Sum(E2.val,T.val)

E  E – T E1.val = Diff(E2.val,T.val)

E  T E.val = T.val

T  T * F T1.val = Prod(T2.val,F.val)

T  T / F T1.val = Div(T2.val,F.val)

T  F T.val = F.val

F  - F F1.val = Prod(F2.val,-1)

F  (E) F.val = E.val

F  const F.val = C.val

2/4/2013

4

Attribute Grammars

• The attribute grammar serves to define the

semantics of the input program

• Attribute rules are best thought of as

definitions, not assignments

• They are not necessarily meant to be

evaluated at any particular time, or in any

particular order, though they do define their

left-hand side in terms of the right-hand side

Evaluating Attributes

• The process of evaluating attributes is called
annotation, or DECORATION, of the parse tree

– When a parse tree under this grammar is fully
decorated, the value of the expression will be in
the val attribute of the root

• The code fragments for the rules are called
SEMANTIC FUNCTIONS

– Strictly speaking, they should be cast as functions,
e.g., E1.val = sum (E2.val, T.val) but often we will
use the obvious E1.val = E2.val + T.val

2/4/2013

5

Evaluating Attributes

E  E + T E1.val = E2.val + T.val

E  E – T E1.val = E2.val - T.val

E  T E.val = T.val

T  T * F T1.val = T2.val * F.val

T  T / F T1.val = T2.val / F.val

T  F T.val = F.val

F  - F F1.val = - F2.val

F  (E) F.val = E.val

F  const F.val = C.val

Evaluating Attributes

• This is a very simple attribute grammar:

– Each symbol has at most one

attribute

• the punctuation marks have no attributes

• These attributes are all so-called SYNTHESIZED

attributes:

– They are calculated only from the attributes of

things below them in the parse tree

2/4/2013

6

Evaluating Attributes

• In general, we are allowed both synthesized
and INHERITED attributes:
– Inherited attributes may depend on things above or

to the side of them in the parse tree

– Tokens have only synthesized attributes, initialized
by the scanner (name of an identifier, value of a
constant, etc.).

– Inherited attributes of the start symbol constitute
run-time parameters of the compiler

Inherited Attributes

• LL(1) grammar covering subtraction:

Expr  const Expr_Tail

Expr_Tail  - const Expr_Tail | ε

• For the expression 9 – 4 – 3:

Expr

9 Expr_Tail

- 4 Expr_Tail

- 3 Expr_Tail

ε

2/4/2013

7

Inherited Attributes

• If we are allowed to pass attribute values not only
bottom-up but also left-to-right then we can pass 9
into the Expr_Tail node for evaluation, and so on for
each Expr_Tail

Expr

9 Expr_Tail

- 4 Expr_Tail

- 3 Expr_Tail

ε

Similar to recursion when the result is accumulated as recursive calls made

Evaluating Attributes

• The grammar for evaluating expressions is

called S-ATTRIBUTED because it uses only

synthesized attributes

• Its ATTRIBUTE FLOW (attribute dependence

graph) is purely bottom-up

– It is SLR(1), but not LL(1)

• An equivalent LL(1) grammar requires

inherited attributes:

2/4/2013

8

Evaluating Attributes – Example

• Attribute grammar in Figure 4.3:
E  T TT E.v = TT.v

TT.st = T.v

TT1  + T TT2 TT1.v = TT2.v

TT2.st = TT1.st + T.v

TT1  - T TT2 TT1.v = TT2.v

TT2.st = TT1.st - T.v

TT   TT.v = TT.st

T  F FT T.v = FT.v

FT.st = F.v

Evaluating Attributes– Example
• Attribute grammar in Figure 4.3 (continued):
FT1  * F FT2 FT1.v = FT2.v

FT2.st = FT1.st * F.v

FT1  / F FT2 FT1.v = FT2.v

FT2.st = FT1.st / F.v

FT   FT.v = FT.st

F1  - F2 F1.v = - F2.v

F  (E) F.v = E.v

F  const F.v = C.v

• Figure 4.4 – parse tree for (1+3)*2

2/4/2013

9

Evaluating Attributes– Example

Evaluating Attributes– Example

• Attribute grammar in Figure 4.3:

– This attribute grammar is a good bit messier than
the first one, but it is still L-ATTRIBUTED, which
means that the attributes can be evaluated in a
single left-to-right pass over the input

– In fact, they can be evaluated during an LL parse

– Each synthetic attribute of a LHS symbol (by
definition of synthetic) depends only on attributes
of its RHS symbols

2/4/2013

10

Evaluating Attributes – Example

• Attribute grammar in Figure 4.3:

– Each inherited attribute of a RHS symbol (by definition
of L-attributed) depends only on

• inherited attributes of the LHS symbol, or

• synthetic or inherited attributes of symbols to its left in the
RHS

– L-attributed grammars are the most general class of
attribute grammars that can be evaluated during an LL
parse

Evaluating Attributes
• There are certain tasks, such as generation

of code for short-circuit Boolean expression

evaluation, that are easiest to express with

non-L-attributed attribute grammars

• Because of the potential cost of complex

traversal schemes, however, most real-

world compilers insist that the grammar be

L-attributed

2/4/2013

11

Evaluating Attributes - Abstract Syntax

• The Abstract Syntax defines essential syntactic
elements without describing how they are
concretely constructed

• Consider the following Pascal and C loops
Pascal C

while i<n do begin while (i<n) {

i:=i+1 i=i+1;

end }

Small differences in concrete syntax; identical abstract construct

Abstract Syntax Format

• We can define an abstract syntax using rules
of the form
– LHS = RHS

• LHS is the name of an abstract syntactic class
• RHS is a list of essential components that define the

class
– Similar to defining a variable. Data type or abstract syntactic

class, and name

• Recursion naturally occurs among the
definitions as with BNF
– Makes it fairly easy to construct programmatically,

similar to what we did for the concrete syntax

2/4/2013

12

Abstract Syntax Example

• Loop
Loop = Expression test ; Statement body

– The abstract class Loop has two components, a test which is a
member of the abstract class Expression, and a body which is a
member of an abstract class Statement

• Nice by-product: If parsing abstract syntax in a language like
Java, it makes sense to actually define a class for each abstract
syntactic class, e.g.

class Loop extends Statement {

Expression test;

Statement body;

}

Abstract Syntax of a C-like Language

Program = Declarations decpart; Statements body;

Declarations = Declaration*

Declaration = VariableDecl | ArrayDecl

VariableDecl = Variable v; Type t

ArrayDecl = Variable v; Type t; Integer size

Type = int | bool | float | char

Statements = Statement*

Statement = Skip | Block | Assignment |

Conditional | Loop

Skip =

Block = Statements

Conditional = Expression test;

Statement thenbranch, elsebranch

Loop = Expression test; Statement body

Assignment = VariableRef target; Expression source

Expression = VariableRef | Value | Binary | Unary

2/4/2013

13

VariableRef = Variable | ArrayRef

Binary = Operator op; Expression term1, term2

Unary = UnaryOp op; Expression term

Operator = BooleanOp | RelationalOp | ArithmeticOp

BooleanOp = && | ||

RelationalOp = = | ! | != | < | <= | > | >=

ArithmeticOp = + | - | * | /

UnaryOp = ! | -

Variable = String id

ArrayRef = String id; Expression index

Value = IntValue | BoolValue | FloatValue | CharValue

IntValue = Integer intValue

FloatValue = Float floatValue

BoolValue = Boolean boolValue

CharValue = Character charValue

Abstract Syntax of a C-like Language

Java Abstract Syntax for C-Like
Language

class Loop extends Statement {

Expression test;

Statement body;

}

class Assignment extends Statement {

// Assignment = Variable target; Expression source

Variable target;

Expression source;

}

…

2/4/2013

14

Abstract Syntax Tree
• Just as we can build a parse tree from a BNF grammar, we

can build an abstract syntax tree from an abstract syntax

• Example for: x+2*y
Expression = Variable | Value | Binary

Binary = Operator op ; Expression term1, term2

Binary node

Expr

Sample C-Like Program

• Compute nth fib number

2/4/2013

15

Abstract Syntax for Loop of C-Like Program

Concrete and Abstract Syntax

• Aren’t the two redundant?
– A little bit

• The concrete syntax tells the programmer exactly what to
write to have a valid program

• The abstract syntax allows valid programs in two different
languages to share common abstract representations
– It is closer to semantics

– We need both!

• To construct the abstract syntax tree a common
approach is a bottom-up attribute grammar
associated with the concrete syntax

2/4/2013

16

Evaluating Attributes – Syntax Trees

Skipping Top-Down, but
it exists too (with inherited
attributes)

Evaluating
Attributes –
Syntax Trees

(1+3)*2

2/4/2013

17

Action Routines

• We can tie this discussion back into the

earlier issue of separated phases v. on-the-

fly semantic analysis and/or code generation

• If semantic analysis and/or code generation

are interleaved with parsing, then the

TRANSLATION SCHEME we use to evaluate

attributes MUST be L-attributed

Action Routines

• If we break semantic analysis and code

generation out into separate phase(s), then

the code that builds the parse/syntax tree can

still use a left-to-right (L-attributed)

translation scheme

• However, the later phases are free to use a

fancier translation scheme if they want

2/4/2013

18

Action Routines

• There are automatic tools that generate

translation schemes for context-free

grammars or tree grammars (which describe

the possible structure of a syntax tree)

– These tools are heavily used in syntax-based

editors and incremental compilers

– Most ordinary compilers, however, use ad-hoc

techniques

Action Routines
• An ad-hoc translation scheme that is interleaved with

parsing takes the
form of a set of ACTION ROUTINES:
– An action routine is a semantic function that we tell the

compiler to execute at a particular point in the parse

– Same idea as the previous abstract syntax example (Fig 4.6,
4.7), except the action routines are embedded among the
symbols of the right-hand sides; work performed is the
same

• For our LL(1) attribute grammar, we could put in
explicit action routines as follows:

2/4/2013

19

Action Routines - Example
• Action routines (Figure 4.9)

Decorating a Syntax Tree
• Abstract syntax tree for a simple program

to print an average of an integer and a real

2/4/2013

20

Complete Attribute
Grammar

2/4/2013

21

