
 

 

Signed Number Representations 
CS221, Mock 
 
So far we have discussed unsigned number representations.  In particular, we have looked 
at the binary number system and shorthand methods in representing binary codes.  With 
m binary digits, we can represent the 2m unique patterns, from 000….0 to 111….1.  When 
we try to represent signed quantities in the same m digits, we still only have 2m patterns 
to work with.  Unless we increase the number of digits available (i.e. make m larger), the 
representation of signed numbers will involve dividing these 2m patterns into positive and 
negative portions.  The two techniques we will look at to do this is the sign-magnitude 
representation and two’s complement. 
 
Sign/Magnitude Notation 
 
Sign/magnitude notation is the simplest and one of the most obvious methods of 
encoding positive and negative numbers.  Assign the leftmost (most significant) bit to be 
the sign bit.  If the sign bit is 0, this means the number is positive.  If the sign bit is 1, 
then the number is negative.  The remaining bits are used to represent the magnitude of 
the binary number in the unsigned binary notation. 
 
Example: 
 

Binary  Value 
0000  +0 
0001  +1 
0010  +2 
0011  +3 
0100  +4 
0101  +5 
0110  +6 
0111  +7 
1000  -0 
1001  -1 
1010  -2 
1011  -3 
1100  -4 
1101  -5 
1110  -6 
1111  -7 

 
Looking at the list you should notice an immediate peculiarity; there are two 
representations for zero!  There is positive zero, and negative zero.  This can cause 
complications for computers checking numbers for equality.   Another disadvantage is 
performing addition or subtraction – we require a special consideration of both signs of 
the numbers to properly compute the operation.   Because of these drawbacks, sign-
magnitude is rarely used for representing integers.   



 

 

Radix Complementation – Two’s Complement 
 
Radix complementation is used to represent signed quantities and is based on the ideas of 
modular arithmetic.  In modular arithmetic, there is a value called the Modulus (M) which 
when added to or subtracted from a number, does not change its value.   
 
If we are representing the integer A, where A is composed of n bits, then if A is positive 
the sign bit, An-1 is zero.  The remaining n-1 bits represent the magnitude of the number 
as in sign magnitude: 
 
 Binary  Two’s Complement Value 
 0000  0 
 0001  +1 
 0010  +2 
 0011  +3 
 0100  +4 
 0101  +5 
 0110  +6 
 0111  +7 
 
Using four bits, the largest positive number we can represent is +7 since the first bit must 
be a 0 to denote positive. 
 
For a negative value for A, the sign bit, An-1 is one instead of zero. The remaining n-1 bits 
are used to represent the negative integers from –1 to –2n-1.  Note that we will have the 
ability to represent one additional negative integer than positive integers, because we’re 
using up one of the patterns starting with 0 to represent 0.  
 
We would like to assign the negative integers to the available bit patterns in a way that 
facilitates straightforward arithmetic.  A method that does this is to use the following 
formula: 
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Consider a positive number.  In this case, An-1 is zero.  We end up with only the 
summation of the remaining terms. 
 
Now consider a negative number.  The An-1  term is one, so we must add in –2n-1 .  Now 
consider if all of the remaining bits are all one’s.  These will all add up to be +2n-1 -1.  It 
will be one smaller than the negative value; e.g.  1111 = yields –23 + 7, or –8 + 7 = -1.  
No matter how many bits we have, if they are all ones, we will end up with –1. 
 



 

 

Now consider if all of the bits are one’s except for the rightmost bit.  We have the same 
case as before, except the positive value will be +2n-1 –2 since we just subtracted one 
from the positive value.  When we add this to the negative value, we end up with –2. 
The end result is we are counting backwards with the negative values, instead of counting 
forward as with positive values.  This is shown in the “circle” below: 
 

 
This representation has the benefit that if we start at any number on the circle, we can add 
positive k (or subtract negative k) from that number by moving k position clockwise or 
counterclockwise.  If an arithmetic operation results in traversal of the point where the 
endpoints are joined, an incorrect answer is given.  However, we are guaranteed that if 
we add a positive and a negative value together, we will result in a value that is possible 
to represent using the number of bits available. 
 
A complete binary table for four bits is shown below: 
 Binary  Two’s Comp Value  Binary  Two’ Comp 
 0000  0    1111  -1 
 0001  +1    1110  -2 
 0010  +2    1101  -3 
 0011  +3    1100  -4 
 0100  +4    1011  -5 
 0101  +5    1010  -6 
 0110  +6    1001  -7 
 0111  +7    1000  -8 
 
To summarize, two’s complement lets us have only one representation for zero and 
allows us to easily perform arithmetic operations without special cases for sign bits. 



 

 

If we are given a decimal value, A, that we want to represent in two’s complement, there 
is an easy way to do it: 
 

1. If A is positive, represent it using the sign-magnitude representation.  The 
leftmost bit must be 0, and the remaining bits are the binary for the integer.  Be 
careful there are enough bits available to represent the number. 

 
2. If A is negative, first represent in binary +A.  

a. Flip all the 1’s to 0’s and the 0’s to 1’s 
b. Add 1 to the result using unsigned binary notation 

 
If you are given a binary value in two’s complement and want to know what the value is 
in decimal, then the process is to: 
 

1. If the leftmost bit is 0, the number is positive.  Compute the magnitude as an 
unsigned binary number. 

 
2. If the leftmost bit is 1, the number is negative.   

a. Flip all the 1’s to 0’s and the 0’s to 1’s 
b. Add 1 to the result using unsigned binary notation 
c. Compute the value as if it were an unsigned binary value, say it is B.  This 

is the magnitude of the negative number. 
d. The actual value is -B 

 
Examples:  Assume that we have 5 bits available. 
 
What is –5 in twos complement? 

+5 in unsigned binary is 00101   (and +5 is 00101 in twos complement) 
Flip the bits to get 11010 
Now add 1: 11011 
The answer is 11011 
 

What is –7 in two’s complement? 
+7 in unsigned binary is 00111   (and +7 is 00111 in twos complement) 
Flip the bits to get 11000 
Now add 1: 11001 

 
What is the decimal value of the two’s complement binary value 11100? 

Leftmost bit is 1, so flip bits: 00011 
Add one : 00100 
This is 4, so the answer is –4. 

 
What is the decimal value of the two’s complement binary value 11011? 
 Leftmost bit is 1, so flip the bits:  00100 
 Add one: 00101 
 This is 5, so the answer is –5 



 

 

Why does this procedure of flipping the bits and adding one work?  We won’t prove it (a 
good way of doing so is by going over the Modulus definition of two’s complement).  
However, to give you what is hopefully a convincing argument look once again at the 
table below: 
 
 Binary  Two’s Comp Value  Binary  Two’ Comp 
 0000  0    1111  -1 
 0001  +1    1110  -2 
 0010  +2    1101  -3 
 0011  +3    1100  -4 
 0100  +4    1011  -5 
 0101  +5    1010  -6 
 0110  +6    1001  -7 
 0111  +7    1000  -8 
 
This table is arranged so that each row has the binary representation if the bits are 
flipped.  For example, 0000 flipped is 1111.    However, 0000=0 while 1111=-1.  The 
numbers are off by one.  If you look at each row, every value is off by one.  This is why 
after we flip the bits of a negative representation, if we add one, we get back the 
magnitude of the negative value. 
 
Computer Arithmetic 
 
When the computer performs mathematical operations, these are executed inside the 
ALU (Arithmetic Logic Unit).   To some degree, everything else inside the computer is 
there to service the ALU.  ALU’s today can handle integers and many also handle 
floating point (real) numbers.  Some systems have a separate FPU (Floating Point Unit) 
instead of bundling this with the ALU.  For example, older Intel processors had a 
separate math co-processor on a separate chip. 

 
As shown in the picture above, the control unit determines when/what data the ALU gets.  
Registers feed data into the ALU, and the ALU in turn outputs the result of computations 
to registers and also to flags that will contain critical information regarding the status of 
the arithmetic operation (e.g., could indicate if it was successful).  The flags are typically 
stored as bit values on a “flags” register. 



 

 

Addition and Subtraction 
 
Addition in two’s complement proceeds just like normal addition you would do with 
decimal numbers, except instead you are adding with binary values.  Each digit is added 
using the following rules 
 

0 + 0 = 0 
1 + 0 = 1 
1 + 1 = 0 (carry of 1 to next column) 
1 + 1 + 1 = 1 (carry of 1 to next column) 

 
There may be a carry beyond the end of the calculation, which is ignored. 
However, we can’t ignore the possibility of overflow.  This occurs when we try to 
represent a value that is too large to hold in the number of bits available.  
 
To check for overflow we use the following rules: 
 If adding two positive numbers, if the result is negative, there is overflow 
 If adding two negative numbers, if the result is positive, there is overflow 
It is impossible to have overflow when adding a positive and negative number. 
 
Here are some examples: 
 
 0010  (+2) 
+ 1001  (-7) 
 ------ 
 1011 
There is no overflow since we added a positive and negative number. 
To convert 1011 to decimal, note the leading 1 indicating a negative value. 
Flip the bits to get 0100, add 1 to get 0101, and the result is –5. 
 
 1111  (-1) 
+ 1001  (-7) 
 ------ 
          11000 
We discard the last carry of 1, giving us 1000. 
There is no overflow since we added two negative numbers and got a negative one. 
To convert 1000 to decimal, note the leading 1 indicating a negative value. 
Flip the bits to get 0111 , add 1 to get 1000, and the result is –8. 
 
 0001  (+1) 
 + 0111  (+7) 
 ------ 
 1000 
There is overflow since we added two positive numbers and got a negative result. 
 



 

 

In the ALU, the results of the overflow (and the carry) are stored in the flags register.  
After performing an addition, we should check the flags register to make sure the 
resulting data is valid. 
 
To perform subtraction, A-B, instead of building a separate circuit, we instead perform 
the operation A + -B.   The value –B is computed by taking the two’s complement and 
adding one to its value: 
 
  +3 = 0011 
  flip bits: 1100 
  add one: 1101 
  1101 is –3 in two’s complement 
 
We would then perform the addition routine as described above.  One hardware design to 
perform these tasks are shown below: 
 

 
 
Integer Multiplication 
 
Multiplying two integers together is a bit more complicated than addition.   Note that we 
could perform multiplication through repeated addition – the downside is that this will be 
very slow.   
 



 

 

First, multiplying (or dividing) by two on binary numbers is easy.  Multiplying or 
dividing a decimal number by ten is just a matter of moving the decimal point around.  
The same happens with binary numbers when multiplying or dividing by two: 
 
  e.g.  (7.5) 111.1  *    2  = 1111.0  (15) 
   (7.5) 111.1   /    2  = 11.11   (3.25) 
 
With integers, we have a fixed decimal point we can’t move around.  So instead of 
moving the decimal point, we can get the same result by shifting the bits left or right, 
putting a 0 in at the end, where each bit shift results in a power of 2: 
 
  e.g.     00111 * 2 = 01110 
   00111 * 4 = 11100 
   00111 / 2 = 00011    (truncation of result) 
   01000 / 8 = 00001 
 
We’ll use the technique of shifting a little later. 
 
How about multiplying by arbitrary values?  We can use the same paper-and-pencil 
technique you probably learned in elementary school to multiple numbers, if they are 
both positive.  Multiplication on unsigned binary numbers is shown below: 

 
 
We could build circuitry to perform these tasks.  The problem arises when multiplying 
two’s complement values.  In the example below, if we consider values as regular 
unsigned binary then everything works ok.  However, to make it work for negative 
values, we must make the partial products negative: 
 

1011 Multiplicand (11 dec)

x 1101 Multiplier (13 dec)

1011 Partial products

0000 Note: if multiplier bit is 1 copy

1011 multiplicand (place value)

1011 otherwise zero

10001111 Product (143 dec)

Note: need double length result

1001 (9)
X 0011 (3)
00001001
00010010
00011011 (27)

1001 (-7)
X 0011 (3)
11111001
11110010
11101011 (-21)

Unsigned Integers Two’s Complement



 

 

The routine does not work at all if the multiplier (the 3 in the example above) is negative, 
because then the amount of shift doesn’t make sense.    
 
To resolve the dilemma we could either: 
 

1. Convert both multiplier and multiplicand to positive, perform the multiplication, 
take the two’s complement of the result iff the sign of the numbers differed. 

 
2. Use a different method 

 
It turns out there is a different method that is faster and doesn’t need this final 
transformation step.  It is called Booth’s algorithm and is widely implemented. 
 
Booth’s Algorithm 
 
Booth’s algorithm is shown in the flowchart below.  The multiplier and multiplicand are 
placed in the Q and M registers, respectively.  There is also a 1 bit register placed 
logically to the right of the least significant bit (Q0) of the Q register and designated Q-1.  
the results of the multiplication will appear in the A and Q registers. 

 



 

 

An example is shown below: 
 

 
In the example above,  we are multiplying 7 * 3.  An arithmetic shift is when we shift the 
bits, but leave the leftmost or rightmost bit as-is.  For multiplication, this will preserve the 
sign bit.  For example, an arithmetic shift right on 10010 results in 11001.   We have 
shifted all of the bits to the right, but kept the leftmost bit as a 1 instead of putting a zero 
in it.  If the leftmost bit was a 0, it would remain 0 after the shift. 
 
In the example, initially Q contains 3 and M contains 7.  A and Q-1 are set to 0.  Since the 
values are 4 bits, we will have 4 cycles.  In the first cycle, Q0Q-1 are equal to 10.  Using 
the flowchart, this results in setting A = A-M , or 0-7 = -7.  Next we arithmetically shift 
A,Q,and Q-1 as if they were all connected.    In the second cycle, Q0Q-1 are equal to 11.  
Using the flowchart, we simply perform an arithmetic shift and continue to the third 
cycle.  In the third cycle, Q0Q-1 are equal to 01.  Using the flowchart, we set A=A+M and 
arithmetic shift again.  Finally, in the fourth cycle, we simply perform a shift. 
 
The end result is in AQ which equals 00010101.  This is 21 in decimal.  You can verify 
that this algorithm also works for negative multipliers. 
 
 
Why does this work?  Here is a brief rationale.  Consider a positive multiplier with one 
block of one’s surrounded by zero’s.  Multiplication can be achieved by adding 
appropriately shifted copies of the multiplicand, as in the example of multiplying 
unsigned binary numbers: 
 
 M * (00011110) = M * (24 + 23 + 22+ 21) 
    = M * (16 + 8 + 4 + 2) 
    = M * 30 
Now observe that the block of ones, if the ones range from i to j, can be more succinctly 
described via: 
 
 2j + 2j-1 + … + 2i  =   2j+1 – 2i 

For example: 



 

 

 
  01111 = 23 + 22+ 21 + 20  = 15 
This is the same as: 
  10000 – 00001   = 16 –1 = 15 
 
This means for our previous example we can compute: 
 
 M * (00011110) = M * (25 – 21) 
    = M * (32 –2 ) 
    = M * 30 
 
We can generalize this approach for cases with more than one block of ones: 
 
 M * (01110110) = M * (26 + 25 + 24 + 22 + 21) 
    = M * (27 – 24   +  23 – 21) 
     
Booth’s algorithm conforms to this scheme by performing a subtraction when the first 1 
of the block is encountered (10) and an addition when the end of the block is encountered 
(01).    A similar argument applies for a negative multiplier. 
 
Integer Division 
 
Division is a bit more complex than multiplication but is based on the same principles as 
the paper-and-pencil division technique: 
 

 
 
The book contains more information describing the steps that must be taken to perform 
integer division (and to perform it more efficiently, too).   
 
 

001111
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00001101

10010011
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