
1

Pipelining, Branch Prediction,
Trends

10.1-10.4

Topics

• 10.1 Quantitative Analyses of Program
Execution

• 10.2 From CISC to RISC
• 10.3 Pipelining the Datapath

Branch Prediction, Delay Slots
• 10.4 Overlapping Register Windows

2

Quantitative Analysis

• CISC approach
– Belief that the semantic gap should be shortened

• The gap between machine-level instructions and high-level
language statements

• Examples
– VAX Sort instruction
– IBM 360 MVC instruction (move character)

» checked if strings overlapped but this was rare
» Could be faster if assumed strings did not overlap

– Sounds reasonable, but is this assumption correct?
• Quantitatively measure programs to see

Quantitative Analysis

• Work by Knuth/Hennessy/Patterson
– Confirmed that most complex instruction and

addressing modes largely unused by compilers
• Difficult for compiler to take advantage of these

modes
• Used by assembly programmers
• But most programmers used a high- level language

3

Frequency of Instructions

• Frequency of
occurrence of
instruction types for a
variety of
languages/benchmark
programs

Arithmetic and other “powerful” instructions only 7%

Complexity of Assignments/Procedures

80% of assignments involve one term;
80% of procedures could be handled supported 4 locals

4

Quantitative Analysis Results
• Bulk of computer programs are very simple at the

instruction level
• Little payoff in making complex instructions
• RISC idea

– Make the common case go fast; by making simple
instructions fast, most programs will go fast

– Load/Store architecture
• Only way to communicate with memory is via Load/Store from

register file. E.g., an ADD can’t have an operand be a memory
address

• Simplifies communications and pipelining (coming up)
• Means we need a lot of registers

– Tradeoff: simpler CPU means there is space to put more registers on the
chip

Speedup and Efficiency

5

Speedup Example

Using benchmarks, we can estimate the impact of a new
architecture before we actually build it!

Pipelining

• The RISC approach lends itself well to a
technique that can greatly improve
processor performance called pipelining

• We will see why this is more difficult with
CISC instructions as we continue…

6

Instruction Prefetch
• Simple version of Pipelining – treating the

instruction cycle like an assembly line

• Fetch accessing main memory
• Execution usually does not access main memory
• Can fetch next instruction during execution of

current instruction
• Called instruction prefetch

Improved Performance
• But not doubled:

– Fetch usually shorter than execution
• Prefetch more than one instruction?

– Any jump or branch means that prefetched
instructions are not the required instructions

• Add more stages to improve performance
– But more stages can also hurt performance…

7

Instruction Cycle State Diagram

Pipelining
• Consider the following decomposition for processing the

instructions
– Fetch instruction – Read into a buffer
– Decode instruction – Determine opcode, operands
– Calculate operands (i.e. EAs) – Indirect, Register indirect, etc.
– Fetch operands – Fetch operands from memory
– Execute instructions - Execute
– Write result – Store result if applicable

• Overlap these operations to make a 6 stage pipeline
• The textbook uses a 5 stage pipeline

(Fetch/Decode/Operand Fetch/Execute/Write Back)

8

Timing of Pipeline

Pipeline

• In the previous slide, we completed 9 instructions
in the time it would take to sequentially complete
two instructions!

• Assumptions for simplicity
– Stages are of equal duration

• Things that can mess up the pipeline
– Structural Hazards – Can all stages can be executed in

parallel?
• What stages might conflict? E.g. access memory

– Data Hazards – One instruction might depend on result
of a previous instruction

• E.g. INC R1 ADD R2,R1
– Control Hazards - Conditional branches break the

pipeline
• Stuff we fetched in advance is useless if we take the branch

9

Branch Not Taken

Branch
Not taken

Continue with
next instruction
as usual

Branch in a Pipeline – Flushed
Pipeline

Branch
Taken
(goto Instr 15)

Flushed
Instructions

10

Dealing with Branches
• Multiple Streams
• Prefetch Branch Target
• Loop buffer
• Branch prediction
• Delayed branching

Multiple Streams
• Have two pipelines
• Prefetch each branch into a separate pipeline
• Use appropriate pipeline

• Leads to bus & register contention
• Still a penalty since it takes some cycles to figure

out the branch target and start fetching instructions
from there

• Multiple branches lead to further pipelines being
needed
– Would need more than two pipelines then

• More expensive circuitry

11

Prefetch Branch Target
• Target of branch is prefetched in addition to

instructions following branch
– Prefetch here means getting these instructions

and storing them in the cache

• Keep target until branch is executed
• Used by IBM 360/91

Loop Buffer
• Very fast memory
• Maintained by fetch stage of pipeline
• Remembers the last N instructions
• Check buffer before fetching from memory
• Very good for small loops or jumps
• c.f. cache
• Used by CRAY-1

12

Branch Prediction (1)
• Predict never taken

– Assume that jump will not happen
– Always fetch next instruction
– 68020 & VAX 11/780
– VAX will not prefetch after branch if a page fault

would result (O/S v CPU design)

• Predict always taken
– Assume that jump will happen
– Always fetch target instruction
– Studies indicate branches are taken around 60% of the

time in most programs

Branch Prediction (2)
• Predict by Opcode

– Some types of branch instructions are more likely to result in
a jump than others (e.g. LOOP vs. JUMP)

– Can get up to 75% success
• Taken/Not taken switch – 1 bit branch predictor

– Based on previous history
• If a branch was taken last time, predict it will be taken again
• If a branch was not taken last time, predict it will not be taken again

– Good for loops
– Could use a single bit to indicate history of the previous

result
– Need to somehow store this bit with each branch instruction

– Could use more bits to remember a more elaborate history

13

Branch Prediction State Diagram
– 2 bit history

Start State

00 10

01 11

Only wrong
once for
branches that
execute an
unusual direction
once (e.g. loop)

Branch Prediction

• State not stored in memory, but in a special
high-speed history table

Branch
Instruction Target
Address Address State
FF0103 FF1104 11
…

14

Dealing with Branches – RISC
Approach

• Delayed Branch – used with RISC machines
– Requires some clever rearrangement of instructions
– Burden on programmers but can increase performance

– Most RISC machines: Doesn’t flush the pipeline in case of a
branch

– Called the Delayed Branch
• This means if we take a branch, we’ll still continue to execute

whatever is currently in the pipeline, at a minimum the next
instruction

• Benefit: Simplifies the hardware quite a bit
• But we need to make sure it is safe to execute the remaining

instructions in the pipeline
• Simple solution to get same behavior as a flushed pipeline: Insert

NOP – No Operation – instructions after a branch
– Called the Delay Slot

RISC Pipeline with Delay Slot
Using a Five Stage pipeline:
IF = Fetch, ID = Decode, EX = Execute
MEM = Memory access, WB = Write back register values

In this example: CPU knows if branches are to be taken after the ID
stage (implications if not known until after the EX stage?)

15

Normal vs. Delayed Branch
Address Normal Delayed
100 LOAD X,A LOAD X,A
101 ADD 1,A ADD 1,A
102 JUMP 105 JUMP 106
103 ADD A,B NOOP
104 SUB C,B ADD A,B
105 STORE A,Z SUB C,B
106 STORE A,Z

One delay slot - Next instruction is always in the pipeline.
“Normal” path contains an implicit “NOP” instruction as the
pipeline gets flushed. Delayed branch requires explicit NOP
instruction placed in the code!

Optimized Delayed Branch

Address Normal Delayed Optimized
100 LOAD X,A LOAD X,A LOAD X,A
101 ADD 1,A ADD 1,A JUMP 105
102 JUMP 105 JUMP 106 ADD 1,A
103 ADD A,B NOOP ADD A,B
104 SUB C,B ADD A,B SUB C,B
105 STORE A,Z SUB C,B STORE A,Z
106 STORE A,Z

But we can optimize this code by rearrangement! Notice we always
Add 1 to A so we can use this instruction to fill the delay slot

16

Example: Delay Slot Scheduling
B) and C)
execute code
that may or may
not be used, but
better than a
NOP

Form of branch
prediction –
compiler
predicts based
on context

Delay Slot Effectiveness

• On benchmarks
– Delay slot allowed branch hazards to be hidden 70% of

the time
– About 20% of delay slots filled with NOPs
– Delay slots we can’t easily fill: when target is another

branch
• Philosophically, delay slots good?

– No longer hides the pipeline implementation from the
programmers (although it will if through a compiler)

– Does allow for compiler optimizations, other schemes
don’t

– Not very effective with modern machines that have
deep pipelines, too difficult to fill multiple delay slots

17

Other Pipelining Overhead

• Each stage of the pipeline has overhead in moving
data from buffer to buffer for one stage to another.
This can lengthen the total time it takes to execute
a single instruction!

• The amount of control logic required to handle
memory and register dependencies and to optimize
the use of the pipeline increases enormously with
the number of stages. This can lead to a case
where the logic between stages is more complex
than the actual stages being controlled.

• Need balance, careful design to optimize
pipelining

Pipelining on the 486/Pentium

• 486 has a 5-stage pipeline
– Fetch

• Instructions can have variable length and can make this stage
out of sync with other stages. This stage actually fetches about
5 instructions with a 16 byte load

– Decode1
• Decode opcode, addressing modes – can be determined from

the first 3 bytes
– Decode2

• Expand opcode into control signals and more complex
addressing modes

– Execute
– Write Back

• Store value back to memory or to register file

18

486 Pipelining Examples
Fetch D1 D2 Ex WB

Fetch D1 D2 Ex WB
Fetch D1 D2 Ex WB

MOV R1, M
MOV R1, R2

MOV M, R1

Fetch D1 D2 Ex WB MOV R2, M

Fetch D1 D2 Ex MOV R1, (R2)

Need R2 written back to use as addr for second instruction in
stage D2

Normally this data is not available until after the WB stage,
but bypass circuitry allows us to send the proper data directly
to EX of the next stage (this is called forwarding)

486 Pipelining Examples
Fetch D1 D2 Ex WB

Fetch D1 D2 Ex
Fetch D1 …

CMP R1,Imm
JCC Target

Target

Target address known after D2 phase
Runs a speculative Fetch on the target during EX
hoping we will execute it (predict taken)

Also fetches next consecutive instruction if branch
not taken

19

Pentium II/IV Pipelining
• Pentium II

– 12 pipeline stages
– Dynamic execution incorporates the

concepts of out of order and speculative
execution

– Two-level, adaptive-training, branch
prediction mechanism

• Pentium IV
– 20 stage pipeline
– Combines different branch prediction

mechanisms to keep the pipeline full

Register Windows

• This technique was motivated by quantitative
analysis of how procedures pass parameters
back and forth

• Normal parameter passing: Uses the stack
– But this is slow
– Would be faster to use registers
– Benchmarks indicate that

• Most procedures only pass a few parameters
• A nesting depth of more than 5 is rare

20

User View of Registers

• Used on SPARC

Overlap Register Windows

CWP = Current Window Pointer

21

Register Windows

• Parameters are “passed” by simply updating
the window pointer
– All parameter access in registers, very fast
– In the rare event we exceed the number of

registers available, can use main memory for
overflow

