
1

Pipelining, Branch Prediction, 
Trends

10.1-10.4

Topics

• 10.1 Quantitative Analyses of Program 
Execution

• 10.2 From CISC to RISC
• 10.3 Pipelining the Datapath

Branch Prediction, Delay Slots
• 10.4 Overlapping Register Windows
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Quantitative Analysis

• CISC approach
– Belief that the semantic gap should be shortened

• The gap between machine-level instructions and high-level 
language statements

• Examples
– VAX Sort instruction
– IBM 360 MVC instruction (move character)

» checked if strings overlapped but this was rare
» Could be faster if assumed strings did not overlap

– Sounds reasonable, but is this assumption correct?
• Quantitatively measure programs to see

Quantitative Analysis

• Work by Knuth/Hennessy/Patterson
– Confirmed that most complex instruction and 

addressing modes largely unused by compilers
• Difficult for compiler to take advantage of these 

modes
• Used by assembly programmers
• But most programmers used a high- level language
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Frequency of Instructions

• Frequency of 
occurrence of 
instruction types for a 
variety of 
languages/benchmark 
programs

Arithmetic and other “powerful” instructions only 7%

Complexity of Assignments/Procedures

80% of assignments involve one term;
80% of procedures could be handled supported 4 locals
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Quantitative Analysis Results
• Bulk of computer programs are very simple at the 

instruction level
• Little payoff in making complex instructions
• RISC idea

– Make the common case go fast;  by making simple 
instructions fast, most programs will go fast

– Load/Store architecture
• Only way to communicate with memory is via Load/Store from 

register file.   E.g., an ADD can’t have an operand be a memory 
address

• Simplifies communications and pipelining (coming up)
• Means we need a lot of registers

– Tradeoff: simpler CPU means there is space to put more registers on the 
chip

Speedup and Efficiency
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Speedup Example

Using benchmarks, we can estimate the impact of a new 
architecture before we actually build it!

Pipelining

• The RISC approach lends itself well to a 
technique that can greatly improve 
processor performance called pipelining

• We will see why this is more difficult with 
CISC instructions as we continue…
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Instruction Prefetch
• Simple version of Pipelining – treating the 

instruction cycle like an assembly line

• Fetch accessing main memory
• Execution usually does not access main memory
• Can fetch next instruction during execution of 

current instruction
• Called instruction prefetch

Improved Performance
• But not doubled:

– Fetch usually shorter than execution
• Prefetch more than one instruction?

– Any jump or branch means that prefetched
instructions are not the required instructions

• Add more stages to improve performance
– But more stages can also hurt performance…
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Instruction Cycle State Diagram

Pipelining
• Consider the following decomposition for processing the 

instructions
– Fetch instruction – Read into a buffer
– Decode instruction – Determine opcode, operands
– Calculate operands (i.e. EAs) – Indirect, Register indirect, etc.
– Fetch operands – Fetch operands from memory
– Execute instructions - Execute
– Write result – Store result if applicable

• Overlap these operations to make a 6 stage pipeline
• The textbook uses a 5 stage pipeline 

(Fetch/Decode/Operand Fetch/Execute/Write Back)
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Timing of Pipeline

Pipeline

• In the previous slide, we completed 9 instructions 
in the time it would take to sequentially complete 
two instructions!

• Assumptions for simplicity
– Stages are of equal duration

• Things that can mess up the pipeline
– Structural Hazards – Can all stages can be executed in 

parallel?
• What stages might conflict? E.g. access memory

– Data Hazards – One instruction might depend on result 
of a previous instruction

• E.g.    INC R1        ADD R2,R1
– Control Hazards - Conditional branches break the 

pipeline
• Stuff we fetched in advance is useless if we take the branch
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Branch Not Taken

Branch
Not taken

Continue with
next instruction
as usual

Branch in a Pipeline – Flushed 
Pipeline

Branch
Taken 
(goto Instr 15)

Flushed
Instructions
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Dealing with Branches
• Multiple Streams
• Prefetch Branch Target
• Loop buffer
• Branch prediction
• Delayed branching

Multiple Streams
• Have two pipelines
• Prefetch each branch into a separate pipeline
• Use appropriate pipeline

• Leads to bus & register contention
• Still a penalty since it takes some cycles to figure 

out the branch target and start fetching instructions 
from there

• Multiple branches lead to further pipelines being 
needed
– Would need more than two pipelines then

• More expensive circuitry
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Prefetch Branch Target
• Target of branch is prefetched in addition to 

instructions following branch
– Prefetch here means getting these instructions 

and storing them in the cache

• Keep target until branch is executed
• Used by IBM 360/91

Loop Buffer
• Very fast memory
• Maintained by fetch stage of pipeline
• Remembers the last N instructions
• Check buffer before fetching from memory
• Very good for small loops or jumps
• c.f. cache
• Used by CRAY-1
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Branch Prediction (1)
• Predict never taken

– Assume that jump will not happen
– Always fetch next instruction 
– 68020 & VAX 11/780
– VAX will not prefetch after branch if a page fault 

would result (O/S v CPU design)

• Predict always taken
– Assume that jump will happen
– Always fetch target instruction
– Studies indicate branches are taken around 60% of the 

time in most programs

Branch Prediction (2)
• Predict by Opcode

– Some types of branch instructions are more likely to result in 
a jump than others (e.g. LOOP vs. JUMP)

– Can get up to 75% success
• Taken/Not taken switch – 1 bit branch predictor

– Based on previous history
• If a branch was taken last time, predict it will be taken again
• If a branch was not taken last time, predict it will not be taken again

– Good for loops
– Could use a single bit to indicate history of the previous 

result
– Need to somehow store this bit with each branch instruction

– Could use more bits to remember a more elaborate history
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Branch Prediction State Diagram 
– 2 bit history

Start State

00 10

01 11

Only wrong 
once for 
branches that 
execute an 
unusual direction 
once (e.g. loop)

Branch Prediction

• State not stored in memory, but in a special 
high-speed history table

Branch 
Instruction Target
Address Address State
FF0103 FF1104 11
…
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Dealing with Branches – RISC 
Approach

• Delayed Branch – used with RISC machines
– Requires some clever rearrangement of instructions
– Burden on programmers but can increase performance

– Most RISC machines: Doesn’t flush the pipeline in case of a 
branch

– Called the Delayed Branch
• This means if we take a branch, we’ll still continue to execute 

whatever is currently in the pipeline, at a minimum the next 
instruction

• Benefit: Simplifies the hardware quite a bit
• But we need to make sure it is safe to execute the remaining 

instructions in the pipeline
• Simple solution to get same behavior as a flushed pipeline:  Insert 

NOP – No Operation – instructions after a branch
– Called the Delay Slot

RISC Pipeline with Delay Slot
Using a Five Stage pipeline:  
IF = Fetch, ID = Decode, EX = Execute
MEM = Memory access, WB = Write back register values

In this example: CPU knows if branches are to be taken after the ID
stage (implications if not known until after the EX stage?)
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Normal vs. Delayed Branch
Address Normal Delayed
100 LOAD X,A LOAD X,A
101 ADD 1,A ADD 1,A
102 JUMP 105 JUMP 106
103 ADD A,B NOOP
104 SUB C,B ADD A,B
105 STORE A,Z SUB C,B
106 STORE A,Z

One delay slot - Next instruction is always in the pipeline.
“Normal” path contains an implicit “NOP” instruction as the 
pipeline gets flushed.  Delayed branch requires explicit NOP 
instruction placed in the code!

Optimized Delayed Branch

Address Normal Delayed Optimized
100 LOAD X,A LOAD X,A LOAD X,A
101 ADD 1,A ADD 1,A JUMP 105
102 JUMP 105 JUMP 106 ADD 1,A
103 ADD A,B NOOP ADD A,B
104 SUB C,B ADD A,B SUB C,B
105 STORE A,Z SUB C,B STORE A,Z
106 STORE A,Z

But we can optimize this code by rearrangement!  Notice we always 
Add 1 to A so we can use this instruction to fill the delay slot
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Example: Delay Slot Scheduling
B) and C) 
execute code 
that may or may 
not be used, but 
better than a 
NOP

Form of branch 
prediction –
compiler 
predicts based 
on context

Delay Slot Effectiveness

• On benchmarks
– Delay slot allowed branch hazards to be hidden 70% of 

the time
– About 20% of delay slots filled with NOPs
– Delay slots we can’t easily fill: when target is another 

branch
• Philosophically, delay slots good?

– No longer hides the pipeline implementation from the 
programmers (although it will if through a compiler)

– Does allow for compiler optimizations, other schemes 
don’t

– Not very effective with modern machines that have 
deep pipelines, too difficult to fill multiple delay slots
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Other Pipelining Overhead

• Each stage of the pipeline has overhead in moving 
data from buffer to buffer for one stage to another.  
This can lengthen the total time it takes to execute 
a single instruction!

• The amount of control logic required to handle 
memory and register dependencies and to optimize 
the use of the pipeline increases enormously with 
the number of stages.  This can lead to a case 
where the logic between stages is more complex 
than the actual stages being controlled.

• Need balance, careful design to optimize 
pipelining

Pipelining on the 486/Pentium

• 486 has a 5-stage pipeline
– Fetch

• Instructions can have variable length and can make this stage 
out of sync with other stages.  This stage actually fetches about 
5 instructions with a 16 byte load

– Decode1
• Decode opcode, addressing modes – can be determined from 

the first 3 bytes
– Decode2

• Expand opcode into control signals and more complex 
addressing modes

– Execute
– Write Back

• Store value back to memory or to register file
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486 Pipelining Examples
Fetch D1 D2 Ex WB

Fetch D1 D2 Ex WB
Fetch D1 D2 Ex WB

MOV R1, M
MOV R1, R2

MOV M, R1

Fetch D1 D2 Ex WB MOV R2, M

Fetch D1 D2 Ex MOV R1, (R2)

Need R2 written back to use as addr for second instruction in 
stage D2

Normally this data is not available until after the WB stage, 
but bypass circuitry allows us to send the proper data directly 
to EX of the next stage (this is called forwarding )

486 Pipelining Examples
Fetch D1 D2 Ex WB

Fetch D1 D2 Ex
Fetch D1 …

CMP R1,Imm
JCC Target

Target

Target address known after D2 phase
Runs a speculative Fetch on the target during EX
hoping we will execute it (predict taken)

Also fetches next consecutive instruction if branch 
not taken
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Pentium II/IV Pipelining
• Pentium II

– 12 pipeline stages
– Dynamic execution incorporates the 

concepts of out of order and speculative 
execution

– Two-level, adaptive-training, branch 
prediction mechanism

• Pentium IV
– 20 stage pipeline
– Combines different branch prediction 

mechanisms to keep the pipeline full

Register Windows

• This technique was motivated by quantitative 
analysis of how procedures pass parameters 
back and forth

• Normal parameter passing: Uses the stack
– But this is slow
– Would be faster to use registers
– Benchmarks indicate that 

• Most procedures only pass a few parameters
• A nesting depth of more than 5 is rare



20

User View of Registers

• Used on SPARC

Overlap Register Windows

CWP = Current Window Pointer
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Register Windows

• Parameters are “passed” by simply updating 
the window pointer
– All parameter access in registers, very fast
– In the rare event we exceed the number of 

registers available, can use main memory for 
overflow


