
CS221 
More Assembly, Chapter 4 Irvine 
 
Basic Instructions 
 
We are finally at a position where we can start going over some instructions! 
  
MOV 
The first is the MOV instruction which moves data from one location to another.  The 
destination comes first, followed by the source.  Either may be registers or memory.  The 
sizes of the data you are moving must match (e.g. can’t move a word into a byte): 
 
 MOV reg, reg   MOV mem, reg 
 MOV reg, mem  MOV mem, immediate 
 MOV reg, immediate 
 
Note the missing MOV instruction – you aren’t allowed to move from one memory 
location directly to another memory location.  Instead you must move to a register first.  
Such is the price one pays for a non-orthogonal architecture.   
 
Here are some examples: 
 
 .data 
 x db 10 
 y db 20 
 total dw ? 
 
 .code 
 mov al, x   ; Move values to AL and BL 
 mov bl, y 
 mov total, 1000  ; Store 1000 into total 
 mov x, y   ; INVALID 
 mov ah, x+1  ; move location X+1 into ah, which is Y 
 
Note the last example.  We can reference memory as offsets from known memory 
locations.  In the last case, we added one to the offset of x.  This gives us the address for 
y, so the contents of y are moved into AH.   Although y had a label, this technique lets 
you access data that may not have a label. 
 
MOVSX, MOVZX 
Sometimes we want to move a small-sized piece of data into a larger register.  For 
example, we might want to move an 8 bit value into a 16 bit register.  Generally this 
occurs with numbers.  We might have a number that is being represented by a byte, but 
now we want to move it into a register and have the 16 bit register operate on the data.  
 



One solution is to use AL.  We could copy the value that is a byte into AL, and then we 
would also have to zero out AH.   Rather than use two instructions, there is a special 
instruction to zero out the unfilled bits in the destination.  This is the movzx instruction 
(move with zero extend) 
 
 .data 
 mynum byte 1 
 .code 
 mov ax, 0AAAAh 
 movzx ax, mynum   ; AX now contains 0001 
 
The movzx instruction requires the .386 or higher processor directive. 
We can do a similar thing for the extended registers: 
 
 movzx eax, mynum   ; EAX now contains 00000001 
 
In a similar fashion, the movsx instruction (move with sign extend) can be used to extend 
negative numbers.   Consider what happens if we use movzx on a negative value: 
 
 .data 
 mynum byte –1 
 .code 
 mov ax, 0AAAAh 
 movzx ax, mynum   ; AX now contains 00FF 
 
Why did we get 00FF?  Because –1 is represented as FF in two’s complement.   
To correctly get –1 into AX, we need to extend (i.e. copy) the sign bit all the way to the 
most significant bit.  If the sign bit is 1, then the movsx instruction pads with 1’s instead 
of 0’s: 
 
 movsx eax, mynum   ; EAX now contains FFFFFFFF or –1 
 
Similarly, if the sign bit contained zero, then we would pad with 0’s all the way out to the 
most significant bit. 
 
XCHG 
The next instruction is the XCHG instruction.  This exchanges the contents of two 
registers or a register and a variable: 
 
 XCHG reg, reg  XCHG reg, mem  XCHG mem, reg 
 
This is an efficient way to swap two operands, for example, in sorting some data. 
 
INC and DEC 
INC is used to increment an operand by 1, while DEC decrements it by 1. 
The operand may be memory or a register. 



 
ADD 
The ADD instruction takes a destination and a source of the same size, adds them, and 
stores the result in the destination: 
 
 ADD ah, al  ; Sets AH = AH + AL 
 ADD var1, 10  ; Var1 = Var1 + 10 
 
Depending on the result of the addition, the zero, negative, sign, overflow, or carry flags 
are affected. 
 
SUB 
The SUB instruction takes a destination and a source of the same size, subtracts them, 
and stores the result in the destination.   
 
 SUB ah, bl  ; Sets AH = AH – BL 
 SUB var1, 10  ; Sets Var1 = Var1 – 10 
 
Depending on the result of the subtraction, the zero, negative, sign, overflow, or carry 
flags are affected. 
 
 
Types of Operands 
 
So far we have been dealing primarily with direct addresses and with immediate data.   
Let’s describe for now direct, direct-offset, and register indirect addressing. 
 
Direct operands refer to the contents of memory at some known location.  For now these 
locations are specified by a label: 
 
 .data 
 countLabel WORD 1000 
 .code 
 mov ax, countLabel   ; Moves 1000 into AX 
 inc countLabel 
 
Here, countLabel refers to the address that is used to store a word. 
 
If we actually want to access the offset that a variable is stored at, we can use the offset 
operator.  In protected mode, an offset is always 32 bits long.  In real mode, offsets are 16 
bits.  To illustrate, the following figure shows a variable named myByte inside the data 
segment: 
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The offset essentially gives us the working address of some data variable.  Here is a code 
sample. 
 
 .data 
 countLabel DWORD 1000 
 .code 
 mov esi, offset countLabel ; Moves address of countLabel into ESI 
     ; This would be  0 in real mode, some address 
     ; where the 1000 is stored in protected mode 
 
For example, if countLabel is stored at offset 0 of its segment, then the value 0 gets 
loaded into ESI.  If we did not use the offset directive, then the actual value inside 
countLabel is loaded into ESI (i.e. 1000). 
 
Direct-Offset operands are used to access locations offset up (+) or down (-) from a 
label.  For example: 
 
 .data 
 countLabel1  WORD 10 
 countLabel2 WORD 20 
 .code 
 mov ax, countLabel1+2  ; Moves 20 into ax 
 mov ax, countLabel2-2  ; Moves 10 into ax 
 
I subtracted and added 2 because the word size is 2 bytes. 
 
Another example in real mode: 
 
 .data 
 bList db 10h, 20h, 30h, 40h  ; Let’s say bList begins at offset 0 
 wList dw 1000h, 2000h, 3000h 
 
 .code 
 mov di, offset bList   ; DI = 0000  
 mov bx, offset bList +1  ; BX = 0001 
 mov si, offset wList+2  ; SI = 0006   need to pass up bList data 
 
If we try this in protected mode: 
 
 .data 
 bList db 10h, 20h, 30h, 40h   
 wList dw 1000h, 2000h, 3000h 
 .code 
 mov eax, offset bList   ; EAX = Address of first byte in bList 
 mov ebx, offset bList +1  ; EBX = Address of second byte in bList 
 mov edx, offset wList+2  ; EDX = Address of 2000h 



 
Finally, register indirect mode is used when a register contains an offset of some 
memory location.    The contents of that memory location are then accessed.  For 
example: 
 
 .data 
 val1 BYTE 10h 
 .code 
 mov esi, offset val1  ; ESI contains offset of Val1 
 mov al, [esi]   ; AL gets 10h 
 
Using this mode it is possible to access memory outside our data segment.  If this occurs 
then a general protection fault occurs which will crash our program. 
 
In real mode, we can only use the SI, DI, BX, or BP registers.  We can access that 
memory location using brackets around the register, e.g. [BX].  By accessing [BX] we are 
accessing the effective address of DS:BX, where BX is some offset from the DS. 
 
For example: 
 
 .data 
 countLabel1 WORD 1000 
 countLabel2 WORD 2 
 .code 
 mov ebx, offset countLabel1  ; mov offset of countLabel to EBX 
 mov ax, [ebx]    ; mov 1000 to AX 
 mov ax, [ebx+2]   ; mov 2 to AX, combine with offset 
 
 
We will have more to say about these later… as you can see this could be one way to 
access successive elements within an array. 
 
 
More MASM Operators and Directives 
 
There are various addressing operators available:  OFFSET, PTR, LABEL, TYPE, and 
ALIGN  We have already discussed OFFSET.  
 
PTR is used to override the default size of an operand.  This is used in combination with 
one of the following data types to indicate the new size:  BYTE, SBYTE, WORD, 
DWORD, SWORD, DWORD, SDWORD, FWORD, QWORD, TBYTE.    For example: 
 
 mov al, byte ptr count   ; treat count like a byte 
 mov ax, word ptr newVal  ; treat newVal like a word 
 mov eax, dword ptr listPointer ; treat listPointer like a double word 
 



As an example, consider treating val32 below: 
 
 .data 
 val32 DWORD 12345678h 
 .code 
 mov ax, val32  ; INVALID, ax is 16 bits while val32 is 32bits 
 mov dx, val32+2 ; INVALID, doesn’t get high word, tries to get doubleword 
 
The solution is to use PTR to override the size: 
 
 mov ax, word ptr val32  ; AX = 5678h 
 mov dx, word ptr val32+2  ; DX = 1234h 
 
In the above example we moved a large value into a small one.  We can also move a 
small value into a large one, but we have to make sure that the memory locations after the 
first small value are set to the appropriate values: 
 
 .data 
 wordlist WORD 5678h, 1234h 
 .code 
 mov eax, dword ptr wordList  ; EAX = 12345678h 
 
This moves data in reverse word order. 
 
The LABEL directive can be used to assign another label to a memory location.  Below 
we assign a label called val16 to the same location we have val32: 
 
 .data 
 val16 label word 
 val32 dword 12345678h 
 .code 
 mov ax, val16    ; AX= 5678h 
 mov bx, val16+2   ; BX = 1234h 
 
The ALIGN directive aligns a variable on a byte, word, doubleword, or paragraph 
boundary.  The syntax is: 
 
 ALIGN bound  
 
Where bound can be 1 for byte, 2 for word, 4 for doubleword, etc.  To do this, the 
assembler inserts empty bytes before the variable.  The purpose of aligning data is 
because the CPU can process data stored at even-numbered addresses more quickly than 
those at odd-numbered addresses (recall how blocks of memory are loaded into the 
cache). 
 
 



Example: 
 
 bVal BYTE ? 
 ALIGN 2 
 wVal WORD ?  ; This word is now on an even boundary 
 
The TYPE operator returns the size, in bytes, of a single element.  For example: 
 
 .data 
 var1 byte 20h 
 var2 word 1000h 
 var3 dword ? 
 var4 byte 10,20,30,40 
 msg byte “Hello”, 0 
 .code 
 mov ax, type var1    ; AX = 1 
 mov ax, type var2    ; AX = 2 
 mov ax, type var3    ; AX = 4 
 mov ax, type var4    ; AX = 1 
 mov ax, type msg    ; AX = 1 
 
Note that type does not count the length of a string or multiply defined data. 
 
The LENGTHOF operator returns the number of elements that have been defined using 
DUP: 
 
 .data 
 val1 dw 1000h 
 arr dw 32 dup(0) 
 arr2 db 10 dup(0) 
 .code 
 mov ax, lengthof val1    ; AX = 1 
 mov ax, lengthof arr    ; AX = 32 
 mov ax, lengthof arr2    ; AX = 10 
  
The SIZEOF operator multiples the LENGTH by the TYPE: 
 
 .data 
 arr dw 32 dup(0) 
 arr2 db 10 dup(0) 
 .code 
 mov ax, sizeof arr    ; 32*2 = 64 
 mov ax, sizeof arr2    ; 10*1 = 10 
 
 



More x86 Assembly Instructions 
 
We are now at a point to talk about additional x86 assembly instructions.  You have 
already seen how to define, move, and perform mathematical operations on data.  The 
next topic is how to perform unconditional branches and loops.  Later we will look at 
performing conditional branches. 
 
JMP 
 
The JMP instruction tells the CPU to “Jump” to a new location.  This is essentially a goto 
statement.  We should load a new IP and possibly a new CS and then start executing code 
at the new location. 
 
On the x86 we have three formats for the JMP instruction: 
 
 JMP SHORT destination 
 JMP NEAR PTR destination 
 JMP FAR PTR destination 
 
Here, destination is a label that is either within +128 or –127 bytes (SHORT), a label that 
is within the same segment (NEAR), or a label that is in a different segment (FAR).  By 
default, it is assumed that the destination is NEAR unless the assembler can compute that 
the jump can be short.    
 
Some usage examples: 
 
 jmp L1    ; NEAR unless can compute SHORT possible 
 jmp near ptr L1 
 jmp short L2 
 jmp far ptr L3   ; Jump to different segment 
 
If it is possible to use SHORT, that is preferred.   In a short jump, the machine code 
includes a 1 byte value that is used as a displacement and added to the IP.  For a 
backward jump, this is a negative value.  For a forward jump, this is a positive value.  
This makes the short jump efficient and doesn’t need much space.  In the other types of 
jumps, we’ll need to store a 16 or 32 bit address as an operand.   
 
Examples: 
 
 Label1:  jmp short Label2  ; Short Jump 
    …  
 Label2:  jmp Label1   ; Short jump also since the 
        ; assembler knows L1 is close 
We can use JMP to make loops: 
 
 Label1: inc ax    



   …  
    … do processing 
      jmp Label1 
 
This is of course an infinite loop unless we have a jump somehow to break out of it. 
 
 
LOOP 
 
For loops, we have a specific LOOP instruction.  This is an easy way to repeat a block of 
statements a specific number of times.  The ECX register is automatically used as a 
counter and is decremented each time the loop repeats.   The format is: 
 
 LOOP destination 
 
Here is a loop that repeats 10 times: 
 
  mov ecx, 10 
  mov eax, 0 
 start: inc eax 
  … 
  loop start   ; Jump back to start 
 
The loop decrements ECX by one each time we are in the loop.  When ECX equals zero, 
the loop stops and no jump takes place.  Upon the end of the above loop, ECX =0 and 
EAX = 10. 
 
You have to be very careful with the LOOP instruction so that you don’t change the 
contents of ECX inside the loop.  Otherwise the loop will probably not execute the 
correct number of iterations. 
 
LOOPW, LOOPD 
 
In Real Mode, the LOOP instruction only works using the CX register.  Since CX is 16 
bits, this only lets you loop 64K times.  If you have a 386 or higher processor, you can 
use the entire ECX register to loop up to 232 times.  LOOPD uses the ECX doubleword 
for the loop counter: 
 
  .386  ; in protected mode 
  mov ecx, 0A0000000h 
 L1 . 
  . 
  loopd L1   ; loop A0000000h times 
 
LOOPW uses a 16 bit word for CX just like LOOP. 
 



 
Indirect Addressing 
 
An indirect operand is generally a register that contains the offset of data in memory.  In 
other words, the register is a pointer to some data in memory.  Typically this data is used 
to do things like traverse arrays. 
 
In real mode, only the SI, DI, BX, and BP register can be used.    By default, SI, DI, and 
BX are assumed to be offsets from the DS (data segment) register. By default, BP is 
assumed to be an offset from the SS (stack segment) register.  
 
The format to access the contents of memory pointed to by an indirect register is to 
enclose the register in square brackets.  For example, if BX contains 100, then [BX]  
refers to the memory at DS:100. 
 
Based on the real mode limitations, many programmers also typically use ESI, EDI, 
EBX, and EBP in protected mode, although we can also use other registers if we like. 
 
Here is an example that sums three 8 bit values: 
 
 .data 
 aList byte 10h, 20h, 30h 
 sum byte 0 
 .code 
 mov ebx, offset aList    ; EBX points to 10h 
 mov al, [ebx]     ; move to AL 
 inc ebx      ; BX points to 20h 
 add al, [ebx]     ; add 20h to AL 
 inc ebx 
 add al, [ebx] 
 mov esi, offset sum    ; same as MOV sum, al 
 mov [esi], al     ; in these two lines 
 exit 
 
Here instead we add three 16-bit integers: 
 
 .data 
 wordlist word 1000h, 2000h, 3000h 
 sum word ? 
 .code 
 mov ebx, offset wordlist 
 mov ax,[ebx] 
 add ax,[ebx+2]     ; Directly add offset of 2 
 add ax,[ebx+4]     ; Directly add offset of 4 
 mov [ebx+6], ax     ; [ebx+6] is offset for sum 
  



 
Here are some examples in real mode: 
 
 .data 
 aString db “ABCDEFG”, 0 
 .code 
 mov ax, @data    ; Set up DS for our data segment 
 mov ds, ax     ; Don’t forget to include this  
 
 mov bx, offset aString    ; BX points to “A” 
 mov cx, 7 
L1: mov dl, [bx]     ; Copy char to DL 
 mov ah, 2     ; 2 into AH, code for display char 
 int 21h      ; DOS routine to display 
 inc bx      ; Increment index 
 loop L1 
 
This loops through and copies A,B,C,D,E,F,G to DL and displays it to the screen. 
 
Here is another example that runs in real mode, can you figure out what it does?  Recall 
that B800 is where video memory begins. 
 
 mov ax, 0B800h 
 mov ds, ax 
 
 mov cx, 80*25 
 mov si, 0 
L: mov [si], word ptr 0F041h ; need word ptr to tell masm 
     ; to move just two bytes worth 
     ; (0F041h could use a dword) 
 add si, 2 
 loop L 
 
 
Based and Indexed Operands 
 
Based and indexed operands are essentially the same as indirect operands.  A register is 
added to a displacement to generate an effective address.  The distinction between based 
and index is that BX and BP are “base” registers, while SI and DI are “index” registers.  
As we saw in the previous example, we can use the SI index like it were a base register. 
 
There are many formats for using the base and index registers.  One way is to use it as an 
offset from an identifier much like you would use a traditional array in C or C++: 



 .data 
 string byte “ABCDE”,0 
 array byte 1,2,3,4,5 

.code 
mov ebx, 2 

 mov ah, array[ebx]     ; move offset of array +2 to AH 
       ; this is the number 3 
 mov ah, string[ebx]    ; move character C to AH 
 
Another technique is to add the registers together explicitly: 
 
 mov ah, [array + ebx]    ; same as mov ah, array[bx] 
 mov ah, [string + ebx]    ; same as mov ah, string[bx] 
 
We can also add together base registers and index registers: 
 
 mov bx, offset string 
 mov si, 2 
 mov ah, [bx + si]    ; same as above, number 3 to ah 
 
However we cannot combine two base registers and two index registers.  This is just 
another annoyance of non-orthogonality: 
 
 mov ah, [si + di]    ; INVALID 
 mov ah, [bp + bx]    ; INVALID 
 
Finally, one other equivalent format is to put two registers back to back.  This has the 
same effect as adding them: 
 
 mov ebx, 1 
 mov esi, 2 
 mov ah, array[ebx][esi]   ; Moves number 4 to ah, offset+1+2 
 mov ah, [array+ebx+esi]   ; Also moves 4 to ah 
  
Sometimes this format is useful for representing 2D arrays. 
 


