Inline Assembly Code
Chapter 12

Asyou have seen, it can be quite tedious to write programs using assembly language
compared to a high level language like Pascal or C++. However, assembly does give you
the advantage of speed and direct access to the computer. There may be some operations
that are impossible in the high-level language that requires the use of assembly (e.g.,
drivers). There may aso be optimizations in assembly that will run much faster than the
high-level language equivalent. This is because human programmers are often able to
write more efficient code than the compiler.

With Microsoft Visual C++ 6.0, you can use the inline assembly to embed assembly-
language instructions directly in your C and C++ source programs without extra
assembly and link steps. The inline assembler is built into the compiler — you don't need
a separate assembler such as MASM.

Important Note: Programs with inline assembler code are not fully portable to other
hardware platforms. If you are designing for portability, avoid using inline assembler.

In Visua C++, the __asmdirective is used to indicate that assembly begins. This can be
played in a single statement or for a block of statements. The syntax is:

__asm gtatement
or
__asm{

statementl
statement?

}

Note that there are two underline characters that precede the asm statement.
A few points warrant mention:
Use // to denote comments rather than ;

Y ou cannot use data definition directives (e.g. db, dw, dd). You CAN access
variables that are defined in C++ and normally available in the program’ s scope.
Refer to the variables just like you would refer to an assembly variable. Be sure
to note the sizes; e.g. something defined as char takes 1 byte, something defined
as short takes 2 bytes, int and long are both 4 bytes, etc.

Y ou cannot use assembler operators like OFFSET. Instead use the LEA
instruction (load effective address):

LEA ebx, buffer
Puts the 32 hit offset of the variable “buffer” into EBX

Numeric constants may be defined in either assembler style or in C style. For
example, OFFh or OxFF both mean the hex value “FF.”

When using inline assembly, the memory model is the FLAT memory mode.
Since Visua Studio doesn’'t run on 286 and lower machines, you also have the
386 instructions available in 32-bit protected mode.

Y ou cannot assume registers contain any particular values, but in general it is safe
to use EAX, EBX, ECX, EDX, ESI, and EDI in your code without restoring them
to their original values. Thisis because C++ doesn’t expect these values to be
preserved between statements (one reason why you can write more efficient
assembly code than the C++ compiler!)

You can use the LENGTH, SIZE, PTR, and TY PE operators.

You can even call C++ function calls or jump to labels OUTSIDE your asm
block.

Write your apps as CONSOLE applications.
Here is a simple example:

/I Compute num * 2”power
int power2(int num, int power)
{
int returnval;
__asm
{
mov eax, num /I Get first argument
mov ecx, power /[Get second argument
shl eax, cl I EAX = EAX * (2 to the power of CL)
mov returnval, eax

}

return returnval;

}

Notice how the inline assembly function has direct access to the parameters. Also notice
that an INT takes up 4 bytes or 32 bits, so we need to use the extended registers like EAX
to ensure that the sizes of the operands match up.

Hereis afile encryption example, where we have written an assembly program to encrypt
a stream of datausing XOR

#include <iostream>
using namespace std;

/I Prototype
void TrandateBuffer(char *buf, unsigned count, unsigned char encryptChar);

int main()

{
char buf[100]="Attack at dawn!";

TranglateBuffer(buf, strlen(buf), 'z);

cout << "The encoded string is; " << buf << end|;
TranslateBuffer(buf, strlen(buf), 'z);

cout << "The decoded string is: " << buf << endl;
return O;

}

/I Encode a string of data using XOR
void TrandateBuffer(char *buf, unsigned count, unsigned char encryptChar)
{
__asm{
mov esl, buf
mov ecx, count
mov al, encryptChar

L1
xor [es], d
incesi
loop L1
}
}

As aside note, when you insert the ASM directive the compiler adds 16 additional
instructions to save and restore registers. Keep thisin mind if you are redlly trying to
optimize code! For example, if you use aloop, you may want to put the loop in assembly
code rather than put your assembly code in a C++ loop.

It is also possible to link C++ programs directly with assembly object files, but we will
skip this technique for this class.

