
 

 

CS221 
Mock 
Floating Point Number Representation 
 
So far we have discussed signed and unsigned number representations.  But how do we 
represent fractions and floating point numbers?  For example, we also need a way to 
represent a number like 409.331.  This document will discuss a binary representation for 
floating point numbers, as well as the IEEE 754 floating point standard. 
 
Converting from Decimal to Binary 
 
Let’s say that we want to convert 252.390625 into binary.  The first task is to convert the 
number 252 into binary.  We already know how to do this, we just divide 252 by 2 and 
keep the remainders, repeating the process with the non-fractional part.   252 = 11111100 
 
The next step is to convert 0.390625 into binary.   To do this, instead of dividing by 2, 
we multiply by 2.  Each time we record whatever is to the left of the decimal place after 
the operation.  The first number becomes the leftmost bit, and the final number will be 
the rightmost bit.  We then repeat this process using whatever is to the right of the 
decimal place.   
 
0.390625 * 2 =   0.78125   0 as leftmost bit 
0.78125 * 2 =  1.5625    1 as the next bit 
0.5625 * 2 =   1.125    1 
0.125 * 2 =   0.25    0 
0.25 * 2 =   0.5    0 
0.5 * 2 =   1.0    1 
0 
 
Upon hitting 0, we’re finished.  The binary representation of this number is then: 
  
 11111100.011001 
 
 Exercise:   
 
 What is 3.625 in binary? 
 What is 0.1 in binary?    
 
Note that with the last example, we could continue forever.  In practice, we continue the 
process until we reach the precision desired to represent the number.  Also note that if we 
wanted to use this process on something other than base 2, we would just multiply by 
whatever base we were interested in (e.g., base 16). 
 
 



 

 

Converting Binary to Decimal 
 
Given a floating point number in binary like 1100.011001, how do we convert this back 
to decimal?  The process is almost identical to the process for unsigned binary.    The 
stuff to the left of the decimal point is the same: 
 
 1100  = 

 0 * 20 + 0 * 21 + 1*22 + 1*23  
 = 4+8  
 = 12 
 
For the fractional part, .011001 we multiply and sum each bit, but starting with 2-1 power 
and continuing up to 2-2, 2-3, etc. 
 
 . 0 1 1 0 0 1 
  2-1 2-2 2-3 2-4 2-5 2-6 
 
Recall that 2-1 is just 1/2,  2-2 is 1/4, 2-3 is 1/8, etc. 
 
Summing this up gives us: 
 
  0 * 2-1 + 1*2-2 + 1*2-3 + 0*2-4 +0*2-5 +1*2-6 
 
 = 1 / 4    +  1 / 8    +  1 / 64 
 = .25  + .125 + .015625 
 = .390625 
 
Putting these together gives us  12.390625. 
 
Exercise:  What is 100.1111  in decimal? 
 
 
 
Scientific Notation 
 
What we’ve described is conceptually how to convert fractions from decimal to binary, 
but typically the data isn’t stored in the computer in the same format.  First we need to 
normalize the data, using scientific notation.    
 
Consider the decimal number 0201.0900  .  First we need to determine which digits are 
significant.  The formal rules for significant digits is: 
 

1. A nonzero digit is always significant 
2. The digit 0 is never significant when it precedes nonzero digits 

 



 

 

Using these rules, we can discard the initial 0 leaving us with 201.0900.   Notice that we 
kept the trailing zeros; they may or may not be significant.  Without more information we 
can’t tell if we want precisely 201.0900, or if perhaps 201.09 is all we knew and the extra 
zeros are padding. 
 
To represent this in scientific notation, we move the decimal point to the position 
immediately to the right of the leftmost significant digit, and multiply by the correct 
factor of 10 to get back the original value: 
 
 2.010900 * 102 
 
In this case, we moved the decimal point two places to the left, so we multiply by 102.  If 
we had a fraction we would do the opposite and multiply by a fraction of 10: 
 
 0.0020109  =   2.0109 * 10-3 
 
We can apply the same process to binary fractions, but use powers of 2 instead of powers 
of 10.  Say that we have the binary value 100.1011.  Converting this to scientific notation 
results in: 
 

1.001011 * 22 
 
Similarly,  0.00100  converted to scientific notation results in: 
 
  1.00 * 2-3 

 
Exercise:  What is 101011.101 in scientific notation? 
 
 
 
IEEE 754 Representation 
 
To represent a number using the IEEE 754 format, first convert it to binary scientific 
notation.  For example, let’s say that we end up with 1.001011 * 23.  In general terms, 
this value is:   (Sign) * (Mantissa) * 2(exponent) 

 
In storing this value, by default, we will assume that the power is 2.  To get this value 
back, we will need to store the “1.001011”, the sign using a sign bit, and then the 
exponent 3. 
 
The pieces that we must store are the: 

• Sign 
• Exponent (the 3) 
• Mantissa  (the 1.001011 part) 
 

 



 

 

In a single precision floating point number using the IEEE 754 format, 32 bits are used to 
store all of these values.  The format is: 
 
 S EEEEEEEE MMMMMMMMMMMMMMMMMMMMMMM 
 1         8  23 
 
1 bit is allocated to the sign field (the leftmost bit). 
8 bits are allocated to store the exponent field. 
23 bits are allocated to store the mantissa field. 
 
Sign Field  
 
This is just a sign bit, like we used with signed binary numbers.  It is either 0 or 1.  0 
indicates a positive number, and 1 indicates a negative number.  For our example number 
of 1.001011* 23, this is positive so the sign bit would hold a 0. 
 
Exponent Field 
 
The exponent section is eight bits long and is also called the characteristic.  Since we are 
using 8 bits, this means we have values from 0 to 255.   However, how would we handle 
negative exponents?  To address negative values, the exponent is biased by a value of 
127.  In other words, the value 127 is added to the actual exponent we want to represent: 
 
 BiasedExponent = 127 + ActualExponent 
 
A short listing of values for the exponent is: 
 
 Decimal  Biased  Decimal  Biased Binary 
 0   127 + 0 = 127   01111111 
 1   127 + 1 = 128   10000000 
 2   127 + 2 = 129   10000001 
 128   127 + 128 = 255  11111111* 
 -1   127 – 1 = 126   01111110 
 -127   127 – 127 = 0   00000000* 
 
For our example number of 1.001011* 23, we want to represent 3.  Using the bias of 127, 
we store 127+3 = 130 or 10000010 for the exponent field. 
 
Mantissa Field 
 
The mantissa section is twenty-three bits long and is sometimes called the significand.  
Since the power of 2 is implicit, all that is left to store are the significant digits of the 

                                                 
* We actually can’t represent these values in a single precision IEEE 754 floating point value.  These are 
special cases, described later 
 



 

 

number to represent.  In the case of our example of 1.001011* 23
 this corresponds to the 

1.001011 part. 
 
Initially, if we have 23 bits to use, you might think that the mantissa would hold 
10010110000000000000000 to hold our significant digits.  However, it does not.  The 
reason is that in scientific notation there will never be a leading 0.  For example, we 
would never have 0.345 * 102.  To be in scientific notation, this would have to be 
expressed as 3.45 * 103.  We have the same issue in binary scientific notation.  However, 
since we can’t have a leading 0, this means there is only one alternative:  there must be a 
leading 1!   Since 0 and 1 are the only digits, the leading digit has to be a 1.  So, we really 
don’t need to represent the leading 1 in the binary scientific notation.  We can just 
assume it is there.  This is referred to as the hidden bit.  This scheme has the advantage 
that it gives us one additional bit worth of precision.    
 
The mantissa for 1.001011* 23

 would then be  
 00101100000000000000000 
This long stream of 0’s has one additional zero than the initial “guess” at the mantissa’s 
value. 
 
Putting all the pieces together for this example gives us: 
 Sign bit = 0 
 Exponent = 10000010 
 Mantissa = 00101100000000000000000 
Or:  0100 0001 0001 0110 0000 0000 0000 0000 
Or:    41160000  in hex  
 
Exercises:   
 Represent –10.4375 in IEEE 754 representation and express as a hex number. 
  
 Given the hex number: 3EA80000  what is this in decimal? 
  
 How would you represent 0 in IEEE 754? 
 
 
Double Precision  
 
In addition to the single precision floating point described here, there is also double 
precision floating point. These have 64 bits instead of 32, and instead of field lengths of 
1, 8, and 23 as in single precision, have field lengths of 1, 11, and 52. The exponent field 
contains a value that is actually 1023 larger than the "true" exponent, rather than being 
larger by 127 as in single precision. Otherwise, it is exactly the same.  The advantage of 
double precision floating point is the ability to represent larger numbers and also numbers 
with more precision (more decimal points).  However, generally it is slower for the 
computer to operate upon the 64 bits than it is upon the 32 bits.  Chapter 8.5 of Stallings 
has a table illustrating the range of values that can be represented using double precision. 
 



 

 

 
Special Numbers 
 
There are a couple of numbers that are special.  Generally, these are numbers reserved for 
cases when some kind of error occurs.    The most common such case is when you might 
attempt to divide by zero.    Or you might want to represent the number 0 exactly!  These 
special cases are assigned codes, where the exponent field is all 1’s or 0’s.   
 
The first special case refers to denormalized numbers.  Denormalized numbers occur 
when the exponent field is all 0’s.  Earlier we said that this would generally be 0 – 127 or 
–127 as the exponent.  However, that is not the case.  Instead, it is a special case to 
represent 0.mantissa * 2-126  instead of 1.mantissa * 2-127.  Why?    One reason is this lets 
us encode the value 0 because we no longer have an implied 1 bit.   If the mantissa is all 
0’s and the exponent is all 0’s, then we have 0 * 2-126 or 0.    This format also lets us 
represent really small numbers between 0 and 1*2-126.  This is referred to as gradual 
underflow.  It is possible to have values that are too small to represent.  By having 
denormalized numbers, we can at least extend the lower range of representable numbers. 
Eventually though, we will have an underflow condition where a number is too small to 
represent, and we end up with 0.  
 
The next special case occurs when the exponent contains all 1’s.  Again, we said earlier 
that this would normally be 255 – 127 or an exponent of 128.  However, there is a special 
case encoded for infinity.  Infinity is encoded when the exponent field is all 1’s and the 
mantissa is all 0’s.  Note that there can be + and – infinity.   The special value of infinity 
is what happens in an overflow condition – when we try to represent a number that is too 
large for the allocated space. 
 
Another special case also occurs when the exponent field is all 1’s.  If the exponent 
contains all 1’s but the mantissa does not contain all 0’s, then this is referred to as NaN or 
Not a Number.  The sign bit is unused.     
 
You will encounter NaN if you attempt to divide 0 by 0 or perform some other 
ambiguous computation.  If you divide a number by 0, you will get infinity.  Note that 
some systems will return NaN if you attempt to divide by 0, instead of infinity.  Also note 
that not all CPUs will check for these conditions.  Adding hardware to check for these 
special cases can be expensive and actually slow the system down as more transistors are 
utilized.  For this reason, some CPUs will simply generate an exception (an error) and 
refuse to complete the operation. 
 
 
Computing with Floating Point 
 
Due to truncation, precision, and rounding errors in the exponent and mantissa you are 
not guaranteed that floating point numbers will be identical!  As we noticed with the 
number 0.2, we need an infinite number of bits if we want to represent it exactly.   
 



 

 

For example, if you compute add 0.2 to a number 100,000 times, you won’t get a value 
that is exactly 20,000 larger.  Due to rounding errors, you will get a slightly different 
value.  For these reasons, it is best to check for a range of numbers when dealing with 
floating point (e.g., >=19999.99 and <= 20000.01)  instead of strict equality. 
 
Floating Point Inaccuracies 
 
Here is an example illustrating how a floating point representation can lose accuracy 
compared to regular unsigned integers, especially as we increase the magnitude of the 
value. 
 
Informally, if we have the same number of bits to represent both a floating point value 
and an integer, in the floating point format we have to use some bits to represent the 
exponent and sign.  This leaves fewer bits for the mantissa.  An unsigned integer is able 
to use all bits to represent mantissa.  This means the floating point format will have less 
precision than the integer format. 
 
Consider the following floating point format that uses 8 bits: 
 
EEE MMMMM 
   3        5 
 
The exponent is unbiased, so the exponent field can represent exponents from 0 to 7. 
The mantissa uses the hidden one bit.  There are no special cases as with IEEE 754. 
 
If the mantissa is all zero’s and the exponent is 0, then the smallest number we can 
represent is 1.00000 * 20   which equals 1. 
 
If the mantissa is all one’s and the exponent is 111, then the largest number we can 
represent is 1.11111 * 27 which equals 11111100 or  252. 
 
With all eight bits as an unsigned integer, we can represent 28 patterns, or the integers 0 to 
255. 
 
Right off the bat, we can see that our floating point format can’t represent the numbers 
253, 254, or 255, while the integer format can.  Of course, the floating point format can 
represent lots of fractional numbers that the integer format can’t represent. 
 
Here is an example of error with the floating point format.  If the biggest number we can 
represent is 252, what is the next smallest number representable?  In binary that would be 
the value: 
  
   111 11110 
 
This is 1.11110 * 27 which equals 11111000 or 248.    We’re missing four whole integers 
in between this and the largest number representable. 



 

 

 
The next smallest value in binary is: 
 
   111 11101 
 
This is 1.11101 * 27 which equals 11110100 or 244.  We dropped another four values. 
 
The amount of error is worst for the largest values, since any lack of precision in the 
mantissa is amplified by the exponent.   For small values, we lose little to no precision.  
For example, we said that the smallest value representable was 1.  What is the next 
smallest value?  It is: 
 
000 00001  
 
This is 1.00001 * 20 which is just 1.03125.    No loss of precision here compared to 
integers!    
 
We can also represent exactly the number two: 
 
001 00000 
 
This is 1.00000 * 21 which is two. 
 
 
In summary, the floating point representation suffers in precision for large numbers, but 
is more accurate for small values.  This is something to take into account whenever you 
are converting integer numbers to floating point format, especially if the integer is large.  
The resulting floating point number may not be particularly close to the actual integer and 
could cause an error in your program. 
 
 
Floating Point Arithmetic 
 
To briefly describe floating point arithmetic, all numbers are stored and processed in 
exponential form.   
 
Addition and Subtraction:  Unlike twos complement, addition and subtraction are more 
complicated than multiplication and division when operating with floating point values.  
As with two’s complement, subtraction is performed by changing the sign of the 
subtrahend and then performing an addition. 
 
1.  The first step is to check for zeros.  If either operand is zero, the other is reported as 
the result. 
 
2.  The second step is to align the mantissa / significand.   For example, given: 
 



 

 

 123 * 100  + 456 * 10-2 
 
we can’t just add the 123 and the 456.  The digits have to be set to an equivalent 
exponent. 
 
 123 * 100  + 4.56 * 100 = 127.56 * 100 
 
We could have aligned the digits by either shifting one number right or another number 
left.  Since either operation can result in the loss of digits and precision, it is the smaller 
number that is shifted.  Therefore, any lost digits are of smaller significance.  For each 
shift right the exponent is increased by one, and for each shift left the exponent is 
decreased by one. 
 
3.  Add or subtract the mantissas 
 
4.  Normalize the result.   After performing the addition we may end up with a non-
normalized number (e.g., 127.56 * 100) which will need to be re-normalized and put back 
into the IEEE 754 format.  We might also have the unfortunate case that the new value 
results in overflow or underflow of the exponent, as well. 
 
Conceptually, multiplication is easier: add the exponents and multiply the mantissas.  
 
For division, the exponents are subtracted and the mantissas are divided.   
 
Both might require reorganizing the results into normal form and watching out for the 
signs and for overflow/underflow, and division by zero.  Consult the Stallings textbook 
for detailed flowcharts on performing addition, multiplication, or division using floating 
point. 
 
 
Other resources 
 
For a comprehensive discussion about floating point representations, see Goldberg’s 
article “What Every Computer Scientist Should Know About Floating Point Arithmetic” 
at http://cch.loria.fr/documentation/IEEE754/ACM/goldberg.pdf  (warning, 3Mb large 
file). 
 
Sun  Microsystems also has a good discussion of underflow available at 
http://docs.sun.com/htmlcoll/coll.648.2/iso-8859-1/NUMCOMPGD/ncg_math.html 
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