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Instruction Set Architectures

Chapter 5

Chapter 5 Objectives

• Understand the factors involved in instruction 
set architecture design.

• Gain familiarity with memory addressing 
modes.

• Understand the concepts of instruction-level 
pipelining and its affect upon execution 
performance.
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5.1 Introduction

• This chapter builds upon the ideas in Chapter 4.

• We present a detailed look at different 
instruction formats, operand types, and memory 
access methods.

• We will see the interrelation between machine 
organization and instruction formats.

• This leads to a deeper understanding of 
computer architecture in general.

5.2 Instruction Formats

Instruction sets are differentiated by the following:
• Number of bits per instruction.
• Stack-based or register-based.
• Number of explicit operands per instruction.
• Operand location.
• Types of operations.
• Type and size of operands.
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5.2 Instruction Formats

Instruction set architectures are measured 
according to:

• Main memory space occupied by a program.

• Instruction complexity.

• Instruction length (in bits).

• Total number of instruction in the instruction 
set.

5.2 Instruction Formats

In designing an instruction set, consideration is 
given to:

• Instruction length.
– Whether short, long, or variable.

• Number of operands.
• Number of addressable registers.
• Memory organization.

– Whether byte- or word addressable.
• Addressing modes.

– Choose any or all: direct, indirect or indexed.
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• Byte ordering, or endianness, is another major 
architectural consideration.

• If we have a two-byte integer, the integer may be 
stored so that the least significant byte is followed 
by the most significant byte or vice versa.
– In little endian machines, the least significant byte 

is followed by the most significant byte.

– Big endian machines store the most significant byte 
first (at the lower address).

5.2 Instruction Formats

• As an example, suppose we have the 
hexadecimal number 12345678.

• The big endian and small endian arrangements of 
the bytes are shown below.

5.2 Instruction Formats

Note: This is the internal storage format, usually invisible to the user
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5.2 Instruction Formats

• Big endian:
– Is more natural.
– The sign of the number can be determined by 

looking at the byte at address offset 0.
– Strings and integers are stored in the same order.

• Little endian:
– Makes it easier to place values on non-word 

boundaries, e.g. odd or even addresses
– Conversion from a 32-bit integer to a 16-bit integer  

does not require any arithmetic.

Standard…What Standard?
• Intel (80x86), VAX are little-endian
• IBM 370, Motorola 680x0 (Mac), and most RISC systems 

are big-endian
• Makes it problematic to translate data back and forth 

between say a Mac/PC
• Internet is big-endian

– Why? Useful control bits in the Most Significant Byte can be 
processed as the data streams in to avoid processing the rest of
the data

– Makes writing Internet programs on PC more awkward!
– Must convert back and forth
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What is an instruction set?
• The complete collection of instructions that are 

understood by a CPU
– The physical hardware that is controlled by the 

instructions is referred to as the Instruction Set 
Architecture (ISA)

• The instruction set is ultimately represented in 
binary machine code also referred to as object 
code
– Usually represented by assembly codes to human 

programmer

Elements of an Instruction
• Operation code (Op code)

– Do this
• Source Operand reference(s)

– To this
• Result Operand reference(s)

– Put the answer here
• Next Instruction Reference

– When you are done, do this instruction next
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Where are the operands?
• Main memory 
• CPU register
• I/O device
• In instruction itself

• To specify which register, which memory 
location, or which I/O device, we’ll need 
some addressing scheme for each

Instruction Set Design
• One important design factor is the number of operands 

contained in each instruction
– Has a significant impact on the word size and complexity of the 

CPU
– E.g. lots of operands generally implies longer word size needed 

for an instruction
• Consider how many operands we need for an ADD 

instruction
– If we want to add the contents of two memory locations together,

then we need to be able to handle at least two memory 
addresses

– Where does the result of the add go?  We need a third operand 
to specify the destination

– What instruction should be executed next?
• Usually the next instruction, but sometimes we might want to jump or 

branch somewhere else
• To specify the next instruction to execute we need a fourth operand

• If all of these operands are memory addresses, we need 
a really long instruction!
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Number of Operands
• In practice, we won’t really see a four-address 

instruction.  
– Too much additional complexity in the CPU
– Long instruction word
– All operands won’t be used very frequently

• Most instructions have one, two, or three operand 
addresses 
– The next instruction is obtained by incrementing the program 

counter, with the exception of branch instructions
• Let’s describe a hypothetical set of instructions to carry 

out the computation for:
Y = (A-B) / (C + (D * E))

Three operand instruction
• If we had a three operand instruction, we could specify two source 

operands and a destination to store the result.  
• Here is a possible sequence of instructions for our equation:

Y = (A-B) / (C + (D * E))

– SUB R1, A, B ; Register R1 ! A-B
– MUL R2, D, E ; Register R2 ! D * E
– ADD R2, R2, C ; Register R2 ! R2 + C
– DIV  R1, R1, R2 ; Register R1 ! R1 / R2

• The three address format is fairly convenient because we have the 
flexibility to dictate where the result of computations should go. Note 
that after this calculation is done, we haven’t changed the contents 
of any of our original locations A,B,C,D, or E.
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Two operand instruction
• How can we cut down the number of operands?

– Might want to make the instruction shorter
• Typical method is to assign a default destination 

operand to hold the results of the computation
– Result always goes into this operand
– Overwrites and old data in that location

• Let’s say that the default destination is the first 
operand in the instruction
– First operand might be a register, memory, etc.

Two Operand Instructions
• Here is a possible sequence of instructions for our equation (say the 

operands are registers):
Y = (A-B) / (C + (D * E))

– SUB  A, B ; Register A ! A-B
– MUL D, E ; Register D ! D*E
– ADD D, C ; Register D ! D+C
– DIV  A, D ; Register A ! A / D

• Get same end result as before, but we changed the contents of registers 
A and D

• If we had some later processing that wanted to use the original contents 
of those registers, we must make a copy of them before performing the 
computation
– MOV  R1, A ; Copy A to register R1
– MOV  R2, D ; Copy D to register R2
– SUB  R1, B ; Register R1 ! R1-B
– MUL R2, E ; Register R2 ! R2*E
– ADD R2, C ; Register R2 ! R2+C
– DIV  R1, R2 ; Register R1 ! R1 / R2

• Now the original registers for A-E remain the same as before, but at the 
cost of some extra instructions to save the results. 
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One Operand Instructions
• Can use the same idea to get rid of the second operand, leaving only 

one operand
• The second operand is left implicit; e.g. could assume that the second 

operand will always be in a register such as the Accumulator:
Y = (A-B) / (C + (D * E))

– LDA   D ; Load ACC with D
– MUL  E ; Acc ! Acc * E
– ADD  C ; Acc ! Acc + C
– STO  R1 ;  Store Acc to R1
– LDA  A ; Acc ! A
– SUB  B ; Acc ! A-B
– DIV  R1 ; Acc ! Acc / R1

• Many early computers relied heavily on one-address based 
instructions, as it makes the CPU much simpler to design.  As you 
can see, it does become somewhat more unwieldy to program.

Zero Operand Instructions
• In some cases we can have zero operand instructions
• Uses the Stack

– Section of memory where we can add and remove items in LIFO 
order

– Last In, First Out
– Envision a stack of trays in a cafeteria; the last tray placed on the 

stack is the first one someone takes out
– The stack in the computer behaves the same way, but with data 

values
• PUSH A ; Places A on top of stack
• POP A ; Removes value on top of stack and puts result in A
• ADD ; Pops top two values off stack, pushes result back on
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Stack-Based Instructions
Y = (A-B) / (C + (D * E))
– Instruction Stack Contents (top to left)
– PUSH B ; B 
– PUSH A ; B, A
– SUB ; (A-B)
– PUSH E ; (A-B), E
– PUSH D ; (A-B), E, D
– MUL ; (A-B), (E*D)
– PUSH C ; (A-B), (E*D), C
– ADD ; (A-B), (E*D+C)
– DIV ; (A-B) / (E*D+C)

How many operands is best? 

• More operands
– More complex (powerful?) instructions
– Fewer instructions per program

• More registers
– Inter-register operations are quicker

• Fewer operands
– Less complex (powerful?) instructions
– More instructions per program
– Faster fetch/execution of instructions
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Design Tradeoff Decisions
• Operation repertoire

– How many ops?
– What can they do?
– How complex are they?

• Data types
– What types of data should ops perform on?

• Registers
– Number of registers, what ops on what registers?

• Addressing
– Mode by which an address is specified (more on this later)

RISC vs. CISC
• RISC – Reduced Instruction Set Computer

– Advocates fewer and simpler instructions
– CPU can be simpler, means each instruction can be executed quickly
– Benchmarks: indicate that most programs spend the majority of time 

doing these simple instructions, so make the common case go fast!
– Downside: uncommon case goes slow (e.g., instead of a single SORT 

instruction, need lots of simple instructions to implement a sort)
– Sparc, Motorola, Alpha

• CISC – Complex Instruction Set Computer
– Advocates many instructions that can perform complex tasks
– E.g. SORT instruction
– Additional complexity in the CPU

• This complexity typically makes ALL instructions slower to execute, not just 
the complex ones

– Fewer instructions needed to write a program using CISC due to richness 
of instructions available

– Intel x86
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Instruction Formats

• We have seen how instruction length is affected 
by the number of operands supported by the ISA.

• In any instruction set, not all instructions require 
the same number of operands.

• Operations that require no operands, such as 
HALT, necessarily waste some space when fixed-
length instructions are used.

• One way to recover some of this space is to use 
expanding opcodes.

5.2 Instruction Formats

• A system has 16 registers and 4K of memory.
• We need 4 bits to access one of the registers. We 

also need 10 bits for a memory address.
• If the system is to have 16-bit instructions, we have 

two choices for our instructions:

Instruction Formats
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5.2 Instruction Formats

• If we allow the length of the opcode to vary, we could 
create a very rich instruction set:

How do we tell which address format an instruction is in?

Instruction Formats

…

…

…

…

Instruction types

Instructions fall into several broad categories 
that you should be familiar with:

• Data movement
• Arithmetic
• Boolean
• Bit manipulation
• I/O
• Control transfer
• Special purpose

Can you think of 
some examples 
of each of these?
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Addressing

• Addressing modes specify where an operand is 
located.

• They can specify a constant, a register, or a 
memory location.

• The actual location of an operand is its effective 
address.

• Certain addressing modes allow us to determine 
the address of an operand dynamically.

Addressing Modes

– Addressing refers to how an operand 
refers to the data we are interested in for 
a particular instruction

– In the Fetch part of the instruction cycle, 
there are three common ways to handle 
addressing in the instruction
• Immediate Addressing
• Direct Addressing
• Indirect Addressing
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Immediate Addressing

• The operand directly contains the value 
we are interested in working with
– E.g. ADD 5

• Means add the number 5 to something
– This uses immediate addressing for the value 

5
– The two’s complement representation for the 

number 5 is directly stored in the ADD 
instruction

– Must know value at assembly time

Direct Addressing
• The operand contains an address with the data

– E.g. ADD 100
• Means to add (Contents of Memory Location 100) to something

– Downside: Need to fit entire address in the instruction, 
may limit address space

• E.g. 32 bit word size and 32 bit addresses.  Do we have a 
problem here?

• Some solutions: specify offset only, use implied segment
– Must know address at assembly time

• The address could also be a register
– E.g.  ADD R5

• Means to add (Contents of Register 5) to something
– Upside:  Not that many registers, don’t have previous 

problem
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Indirect Addressing
• The operand contains an address, and that address 

contains the address of the data
– E.g.  Add [100]

• Means “The data at memory location 100 is an address.  Go to the 
address stored there and get that data and add it to the Accumulator”

– Downside: Requires additional memory access
– Upside: Can store a full address at memory location 100

• First address must be fixed at assembly time, but second address can 
change during runtime!  This is very useful for dynamically accessing 
different addresses in memory (e.g., traversing an array)

• Can also do Indirect Addressing with registers
– E.g. Add [R3]

• Means “The data in register 3 is an address. Go to that address in 
memory, get the data, and add it to the Accumulator”

• Indirect Addressing can be thought of as additional 
instruction subcycle

Other Addressing Modes

• Indexed addressing uses a register (implicitly or 
explicitly) as an offset, which is added to the 
address in the operand to determine the effective 
address of the data.

• Based addressing is similar except that a base 
register is used instead of an index register.

• The difference between these two is that an index 
register holds an offset relative to the address given 
in the instruction, a base register holds a base 
address where the address field represents a 
displacement from this base.
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Summary - Addressing Modes

Addressing Example

• What value is loaded into the accumulator for each 
addressing mode?

Load 800
Load 800
Load 800
Load R1[800]
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Addressing Example

• These are the values loaded into the accumulator 
for each addressing mode.

Load R1     using Indirect Addressing?

5.5 Instruction-Level Pipelining

• Some CPUs divide the fetch-decode-execute cycle 
into smaller steps.

• These smaller steps can often be executed in parallel 
to increase throughput.

• Such parallel execution is called instruction-level 
pipelining.

• This term is sometimes abbreviated ILP in the 
literature.
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Instruction Prefetch
• Simple version of Pipelining – treating the 

instruction cycle like an assembly line

• Fetch accessing main memory
• Execution usually does not access main memory
• Can fetch next instruction during execution of 

current instruction
• Called instruction prefetch

Improved Performance
• But not doubled:

– Fetch usually shorter than execution
• Prefetch more than one instruction?

– Any jump or branch means that prefetched
instructions are not the required instructions

• Add more stages to improve performance
– But more stages can also hurt performance…
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Instruction Cycle State Diagram

Pipelining
• Consider the following decomposition for 

processing the instructions
– Fetch instruction – Read into a buffer
– Decode instruction – Determine opcode, operands
– Calculate operands (i.e. EAs) – Indirect, Register 

indirect, etc.
– Fetch operands – Fetch operands from memory
– Execute instructions - Execute
– Write result – Store result if applicable

• Overlap these operations to make a 6 stage 
pipeline
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Timing of Pipeline

We completed 9 
instructions in 
the time it would 
take to 
sequentially 
complete two 
instructions!

Assumption for 
simplicity:
Stages are of 
equal duration

Instruction-Level Pipelining

• The theoretical speedup offered by a pipeline can be 
determined as follows:

Let tp be the time per stage.  Each instruction 
represents a task, T, in the pipeline, with n tasks.
The first task (instruction) requires k × tp time to 
complete in a k-stage pipeline.  The remaining (n - 1) 
tasks emerge from the pipeline one per cycle.  So the 
total time to complete the remaining tasks is (n - 1)tp.
Thus, to complete n tasks using a k-stage pipeline 
requires:

(k × tp) + (n - 1)tp = (k + n - 1)tp.
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Instruction-Level Pipelining

• If we take the time required to complete n tasks 
without a pipeline and divide it by the time it takes to 
complete n tasks using a pipeline, we find:

• If we take the limit as n approaches infinity, (k + n - 1) 
approaches n, which results in a theoretical speedup 
of:

Instruction-Level Pipelining
• Our neat equations take a number of things for 

granted.
• We assume that the pipeline can be kept filled at all 

times.  This is not always the case.  Pipeline hazards
arise that cause pipeline conflicts and stalls.

• Things that can mess up the pipeline
– Structural Hazards – Can all stages can be executed in parallel?

• What stages might conflict? E.g. access memory
– Data Hazards – One instruction might depend on result of a 
previous instruction

• e.g.    INC R1        ADD R2,R1
– Control Hazards - Conditional branches break the pipeline

• Stuff we fetched in advance is useless if we take the branch
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Branch Not Taken

Branch
Not taken

Continue with
next instruction
as usual

Branch in a Pipeline – Flushed 
Pipeline

Branch
Taken 
(goto Instr 15)

Flushed
Instructions



25

Dealing with Branches
• Multiple Streams
• Prefetch Branch Target
• Loop buffer
• Branch prediction
• Delayed branching

Multiple Streams
• Have two pipelines
• Prefetch each branch into a separate pipeline
• Use appropriate pipeline

• Leads to bus & register contention
• Still a penalty since it takes some cycles to 

figure out the branch target and start fetching 
instructions from there

• Multiple branches lead to further pipelines being 
needed
– Would need more than two pipelines then

• More expensive circuitry
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Prefetch Branch Target
• Target of branch is prefetched in addition 

to instructions following branch
– Prefetch here means getting these 

instructions and storing them in the cache
• Keep target until branch is executed
• Used by IBM 360/91

Loop Buffer
• Very fast memory
• Maintained by fetch stage of pipeline
• Remembers the last N instructions
• Check buffer before fetching from memory
• Very good for small loops or jumps
• c.f. cache
• Used by CRAY-1
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Branch Prediction (1)
• Predict never taken

– Assume that jump will not happen
– Always fetch next instruction 
– 68020 & VAX 11/780

• Predict always taken
– Assume that jump will happen
– Always fetch target instruction
– Studies indicate branches are taken around 60% 

of the time in most programs

Branch Prediction (2)

• Predict by Opcode
– Some types of branch instructions are more likely to result in a

jump than others (e.g. LOOP vs. JUMP)
– Can get up to 75% success

• Taken/Not taken switch – 1 bit branch predictor
– Based on previous history

• If a branch was taken last time, predict it will be taken again
• If a branch was not taken last time, predict it will not be taken again

– Good for loops
– Could use a single bit to indicate history of the previous result
– Need to somehow store this bit with each branch instruction

– Could use more bits to remember a more elaborate history
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Branch Prediction State 
Diagram – 2 bit history

Start State

00 10

01 11

Only wrong 
once for 
branches that 
execute an 
unusual direction 
once (e.g. loop)

Branch Prediction
• State not stored in memory, but in a 

special high-speed history table

Branch 
Instruction Target
Address Address State
FF0103 FF1104 11
…
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Dealing with Branches – RISC 
Approach

• Delayed Branch – used with RISC machines
– Requires some clever rearrangement of instructions
– Burden on programmers but can increase 

performance

– Most RISC machines: Doesn’t flush the pipeline in 
case of a branch

– Called the Delayed Branch
• This means if we take a branch, we’ll still continue to execute 

whatever is currently in the pipeline, at a minimum the next 
instruction

• Benefit: Simplifies the hardware quite a bit
• But we need to make sure it is safe to execute the remaining 

instructions in the pipeline
• Simple solution to get same behavior as a flushed pipeline:  

Insert NOP – No Operation – instructions after a branch
– Called the Delay Slot

RISC Pipeline with Delay Slot
Using a Five Stage pipeline:  
IF = Fetch, ID = Decode, EX = Execute
MEM = Memory access, WB = Write back register values

In this example: CPU knows if branches are to be taken after the ID
stage (implications if not known until after the EX stage?)
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Normal vs. Delayed Branch

Address Normal Delayed
100 LOAD X,A LOAD X,A
101 ADD 1,A ADD 1,A
102 JUMP 105 JUMP 106
103 ADD A,B NOOP
104 SUB C,B ADD A,B
105 STORE A,Z SUB C,B
106 STORE A,Z

One delay slot - Next instruction is always in the pipeline.
“Normal” path contains an implicit “NOP” instruction as the 
pipeline gets flushed.  Delayed branch requires explicit NOP 
instruction placed in the code!

Optimized Delayed Branch

Address Normal Delayed Optimized
100 LOAD X,A LOAD X,A LOAD X,A
101 ADD 1,A ADD 1,A JUMP 105
102 JUMP 105 JUMP 106 ADD 1,A
103 ADD A,B NOOP ADD A,B
104 SUB C,B ADD A,B SUB C,B
105 STORE A,Z SUB C,B STORE A,Z
106 STORE A,Z

But we can optimize this code by rearrangement!  Notice we always 
Add 1 to A so we can use this instruction to fill the delay slot
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Example: Delay Slot Scheduling

B) and C) 
execute code 
that may or may 
not be used, but 
better than a 
NOP

Form of branch 
prediction –
compiler 
predicts based 
on context

Delay Slot Effectiveness
• On benchmarks

– Delay slot allowed branch hazards to be hidden 70% 
of the time

– About 20% of delay slots filled with NOPs
– Delay slots we can’t easily fill: when target is another 

branch
• Philosophically, delay slots good?

– No longer hides the pipeline implementation from the 
programmers (although it will if through a compiler)

– Does allow for compiler optimizations, other schemes 
don’t

– Not very effective with modern machines that have 
deep pipelines, too difficult to fill multiple delay slots
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Other Pipelining Overhead
• Each stage of the pipeline has overhead in moving data 

from buffer to buffer for one stage to another.  This can 
lengthen the total time it takes to execute a single 
instruction!

• The amount of control logic required to handle memory 
and register dependencies and to optimize the use of the 
pipeline increases enormously with the number of stages.  
This can lead to a case where the logic between stages 
is more complex than the actual stages being controlled.

• Need balance, careful design to optimize pipelining

Pipelining on the 486/Pentium
• 486 has a 5-stage pipeline

– Fetch
• Instructions can have variable length and can make this 

stage out of sync with other stages.  This stage actually 
fetches about 5 instructions with a 16 byte load

– Decode1
• Decode opcode, addressing modes – can be determined 

from the first 3 bytes
– Decode2

• Expand opcode into control signals and more complex 
addressing modes

– Execute
– Write Back

• Store value back to memory or to register file
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486 Pipelining Examples

Fetch D1 D2 Ex WB
Fetch D1 D2 Ex WB

Fetch D1 D2 Ex WB

MOV R1, M
MOV R1, R2

MOV M, R3

Fetch D1 D2 Ex WB MOV R2, M

Fetch D1 D2 Ex MOV R1, (R2)

Need R2 written back to use as addr for second instruction in 
stage D2

Normally this data is not available until after the WB stage, 
but bypass circuitry allows us to send the proper data directly 
to EX of the next stage (this is called forwarding)

486 Pipelining Examples

Fetch D1 D2 Ex WB
Fetch D1 D2 Ex

Fetch D1 …

CMP R1,Imm
JCC Target

Target

Target address known after D2 phase
Runs a speculative Fetch on the target during EX
hoping we will execute it (predict taken)

Also fetches next consecutive instruction if branch 
not taken
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Pentium II/IV Pipelining
• Pentium II

– 12 pipeline stages
– Dynamic execution incorporates the concepts of out of 

order and speculative execution
– Two-level, adaptive-training, branch prediction 

mechanism
• Pentium IV

– 20 stage pipeline
– Combines different branch prediction mechanisms to 

keep the pipeline full

• Instructions can be fixed length or variable 
length.

• To enrich the instruction set for a fixed length 
instruction set, expanding opcodes can be used.

• The addressing mode of an ISA is also another 
important factor.  We looked at:
– Immediate – Direct
– Register – Register Indirect
– Indirect – Indexed
– Based – Stack

Chapter 5 Conclusion
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• A k-stage pipeline can theoretically produce 
execution speedup of k as compared to a 
non-pipelined machine.

• Pipeline hazards such as resource conflicts 
and conditional branching prevents this 
speedup from being achieved in practice.

• Skipping from text: Java VM architectures 

Chapter 5 Conclusion


