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Computer Organization
and Architecture

Chapter 4
Internal Memory

Characteristics
#6 Location ¥ Performance
BICPU, Internal, External [l Access, Cycle, Transfer
$ Capacity time
BEWord size, number of 3 Physical type
words [AISemiconductor, magnetic,
$8 Unit of transfer optical
EWord on bus, block, cluster 98 Physical characteristics
%€ Access method Vola-tile ,. Erasable
A Direct, Random, 3 Organization
Associative, Sequential APhysical arrangement of

bits into words




Access Methods (1)

¥ Sequential
[~lStart at the beginning and read through in order

[~]Access time depends on location of data and
previous location

[rle.g. tape
F8Direct
[AlIndividual blocks have unique address

[AlAccess is by jumping to vicinity plus sequential
search

[2lAccess time depends on location and previous
location

[Ale.g. disk

Access Methods (2)

¥ Random

[alIndividual addresses identify locations exactly

[~lAccess time is independent of location or previous
access

Re.g. RAM
3 Associative

[AlData is located by a comparison with contents of a
portion of the store

[~]Access time is independent of location or previous
access

[~le.g. cache




Memory Hierarchy

F Registers
[alin CPU
3¢ Internal or Main memory
[&AIMay include one or more levels of cache
[AI“RAM”
e External memory
[AlBacking store

Performance

3 Access time

[AlTime between presenting the address and getting
the valid data

FMemory Cycle time

[AITime may be required for the memory to “recover”
before next access

[AlCycle time is access + recovery
3 Transfer Rate
rIRate at which data can be moved




Physical Characteristics

FDecay

Fe Volatility
F8Erasable

8 Power consumption

The Bottom Line

# How much?

(&l Capacity
# How fast?

KR Time is money
# How expensive?

# Tradeoffs among all of these

[NIE.g. Faster = More expensive, More = Less cost (per bit) but
slower

Al Solution : Memory Hierarchy




Hierarchy List

38 Registers

¥ L1 Cache

¢ L2 Cache

# Main memory
# Disk cache

36 Disk

# Optical

¥ Tape

¥ As one goes down the
hierarchy
[l Decreasing cost per bit
A Increasing capacity
Increasing access time

[AIDecreasing frequency of
access of the memory by
the processor — locality of
reference

So you want fast?

F It is possible to build a computer which uses
only static RAM (see later)

38 This would be very fast

#8 This would need no cache
[AlHow can you cache cache?

F8 This would cost a very large amount




Locality of Reference

#6 Temporal Locality

[~IPrograms tend to reference the same memory locations at a
future point in time

[®1Due to loops and iteration, programs spending a lot of time in
one section of code
#6 Spatial Locality

BlPrograms tend to reference memory locations that are near
other recently-referenced memory locations

Due to the way contiguous memory is referenced, e.g. an array
or the instructions that make up a program
#6 Locality of reference does not always hold, but it usually
holds

Cache Example

8 Consider a Level 1 cache capable of holding
1000 words with a 0.1 s access time. Level 2
IS memory with a 1 ns access time.

# If 95% of memory access is in the cache:
AT=(0.95)*(0.1 ns) + (0.05)*(0.1+1 ns) = 0.15 ns

F If 5% of memory access is in the cache:
AT=(0.05)*(0.1 ns) + (0.95)*(0.1+1 ns) = 1.05 ns

any cache hits as possible!

0% 100%




Semiconductor Memory

FRAM

[aIMisnamed as all semiconductor memory is random
access

[AlRead/Write

[AlVolatile

[AlTemporary storage

[AITwo main types: Static or Dynamic

Dynamic RAM

#6 Bits stored as charge in capacitors

# Charges leak

38 Need refreshing even when powered

# Simpler construction

#6 Smaller per bit

# Less expensive

¥ Need refresh circuits (every few milliseconds)
36 Slower

# Main memory




Static RAM

#6 Bits stored as on/off switches via flip-flops
#6 No charges to leak

#6 No refreshing needed when powered

# More complex construction

# Larger per bit

# More expensive

#6 Does not need refresh circuits

¥ Faster

# Cache

Read Only Memory (ROM)

6 Permanent storage

8 Microprogramming

g8 Library subroutines

38 Systems programs (BIOS)
8 Function tables




Types of ROM

8 Written during manufacture
[alVery expensive for small runs

8 Programmable (once)
[AIPROM
[~INeeds special equipment to program

FRead “mostly”

[~lErasable Programmable (EPROM)
XlErased by UV

[AlElectrically Erasable (EEPROM)

XITakes much longer to write than read

[&lFlash memory
XIErase whole memory electrically

Chip Organization

F8Consider an individual memory cell. Select line
indicates if active, Control line indicates read or
write.

Control

Cdl
Select Data In / Data Out (sense)

Memory Cell Operations




Organization in detail

¥ Some possible ways to create a 16Mbit chip
1M of 16 bit words
[&116 1Mbit chips, one chip for each bit of the desired 16 bit word
[AIA 2048 x 2048 x 4bit array. Consider a 4 bit word size, so
4,194,304 addressable locations
XIReduces number of address pins
XIMultiplex row address and column address
XIThis example: 11 pins to address (211=2048), multiplex over the pins
twice to get 22 bits (222 = 4M) for each 4 bit word
XITo access memory, first send an address for the row (RAS), then
send the address for the column (CAS). Together this activates the
SELECT line. Need four lines for the Data In/Sense lines.

XIAdding one more pin doubles range of values so 4 times the capacity
as we increase the dimensions

Timing and Contral

Refresh .
Counter * MUX
Row O
Memory array
A0 .-'};h!l]‘c..\\ — 2048 2048 4)
Al uffer
) D r
o Dratat Input .
uimn . ~ d—|_ i
AlD _,\:i‘“.:_“ Sense Amplifier Buffer E“%
Buffer and VO Gate 1] 121 Outpun ni
Buffer
h Column Decoder
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Refreshing

FeRefresh circuit included on chip

38 Disable chip

#6 Count through rows

FRead & Write back

8 Takes time

¥ Slows down apparent performance

Packaging

Al9 —ef] | 32— Vee Vee —] 1 2ap——Wss
Als —mef]2 8 31 [l—ALE 1] ]2 25 [Tt 134
ALS —ef]3 30 ALT 12 |3 22 [Jout-e- 123
Al —pe]4 39EEMJ W —m{]4 21[1—CAS
AT —m{]5 28 Al3 RAS —mm{]5 20— 0L
Afi —ef]6 27[1l— AS NC —m{]6 19]1— A9
AS — |7 26— AY Al —]7 15 [fl— AR
Ad —ml]8 25[—All Al —p{]8 17[— A7
A3 —me{]9 32 Pin Dip 24[l—Vpp Al —m{]9 16[Fl— A
A2—mfl0 23 [To— A 10 A2 —mf] 10} 15[Jol— A5
Al —m] 11 22[r—CE AT —mf]11 14— A4
Al —mmf] 12 21— D7 Ve — 12 13— Vss
D0 —{] 13 20 DA

D1 -4 14 135

N2 4—]15 18 D4

Vs —16 gop iew 713

(a) 8 Mbit EPROM (b) 16 Mbit DRAM

CE = Chip Enable, Vss = Ground, Vcc=+V, OE = Output Enable,
WE = Write Enable
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Module
Organization

[AlAlternate Organization
Using Modules to
reference 256K 8 bit
words

[&18 256K chip for each bit
of the desired 8 bit word

&IFull 18 bit address
presented to each module,
a single bit output. Data
distributed across all chips
for a single word

Memory
Address
Register (MAR)

9 3

————= Decode 1 of

512 Words by
512 Bits
Chip #1

d Memory
512 Bit-sense Buffer

Decode 1 of

| Bit #1 Register (MBR)
1

| 512 Bit-sense

512 Words by
512 Bits
Chip #8

Decode 1 of
512 Bit-sense

Module Organization — Larger

Memories

F6Can piece together existing modules to make
even larger memories
F8Consider previous 256K x 8bit system

Allf we want 1M of memory, can tie together four of
the 256K x 8bit modules

B®IHow to tell which of the four modules contains the

data we want?

[~INeed 20 address lines to reference 1M
XIUse lower 18 bits to reference address as before

XIUse higher 2 bits into the Chip Select to enable only one of
the four memory modules
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Module Organization (2)

Memory
Address
Register (Y T Ty~ T —-
(MAR) o~ =
—y ©01 A1 vl By > 1 > b1 Memory
9 . k Buffr
L E L E [ E |{ (MBR)

512 bits. 2-terminal cells

51 A7
Group

Chip ¢—Ae—e oo m e — — —————

Group $— (B: - S

Enable ¢— 15— I B8 C8 D8
Select 1 =

) | e

Groups E L E E L E [

p j E
Bit 1
9 / Liu L\B/Z\J All chips 512 words by
e

Error Correction

g Hard Failure
[AlPermanent defect
36 Soft Error
[aIRandom, non-destructive
[&AINo permanent damage to memory
¥ Hamming error correcting code one technique
for detecting errors

[AlSimilar to parity bit, but contains enough information
to correct data with single bit errors
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Cache

¢ Small amount of fast memory
¥ Sits between normal main memory and CPU
& May be located on CPU chip or module

Block Transfer

r~An

L.

CPU "l Cache

Main Memory

Word Transfer r\M
‘_

Cache operation - overview

38 CPU requests contents of memory location
38 Check cache for this data
38 If present, get from cache (fast)

38 If not present, read required block from main
memory to cache

3 Then deliver from cache to CPU

#6 Cache includes tags to identify which block of
main memory is in each cache slot

14



Cache Design

# If memory contains 2" addressable words
[AIMemory can be broken up into blocks with K words per block.

Number of blocks = 2" / K

[®lCache consists of C lines or slots, each consisting of K words

RC << M

®IHow to map blocks of memory to lines in the cache?

Ceche LineO

Linel

LineC-1

Memory

Block O

Block 1

Block (27K)-1

Cache Design

36 Size

¢ Mapping Function

¥ Replacement Algorithm
38 Write Policy

FeBlock Size

FNumber of Caches

15



Size does matter

¥ Cost
[2AIMore cache is expensive

e Speed
[&AIMore cache is faster (up to a point)

[2lChecking cache for data takes time

XIAdding more cache would slow down the process of looking
for something in the cache

Typical Cache Organization

Address ‘I

Address
huffer

Control Control
Processor ¢ » Cache »

System Bus

Data
buffer

16



Mapping Function

FWe'll use the following configuration example

[zlCache of 64KByte
[alCache line / Block size is 4 bytes
Xli.e. cache is 16,385 (214) lines of 4 bytes
[AIMain memory of 16MBytes
X124 bit address
X1(224=16M)
X116Mbytes / 4bytes-per-block > 4 MB of Memory Blocks
[2AlSomehow we have to map the 4Mb of blocks in

memory onto the 16K of lines in the cache. Multiple
blocks will have to map to the same line in the cache!

Direct Mapping

38 Simplest mapping technique - each block of
main memory maps to only one cache line
[Ali.e. if a block is in cache, it must be in one specific
place
6 Formula to map a memory block to a cache line:
[Ali =jmodc
Xli=Cache Line Number

Xlj=Main Memory Block Number
Xlc=Number of Lines in Cache
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Direct Mapping with C=4

#6 Shrinking our example to a cache line size of 4 slots
(each slot/line/block still contains 4 words):

[®ICache Line
X0
X1
X2
X3
In general:
x10
X1
X2
X3

Memory Block Held
0,48, ..

1,59, ..
2, 6,10, ...
3,7,11, ...

, C, 2C, 3C, ...

, C+1, 2C+1, 3C+1, ...
, C+2, 2C+2, 3C+2, ...
, C+3, 2C+3, 3C+3, ..

W N Pk O

Direct Mapping with C=4

Valid Dirty Tag

/
[T Slot0

[T Sot1
—

mm—
Cache Memory

Don't forget — each slot contains
K words (e.g. 4 words)

Block O

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Main
Memory
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Direct Mapping Address
Structure

FAddress is in two parts
[AlLeast Significant w bits identify unique word within a
cache line
[&AIMost Significant s bits specify one memory block

[2aIThe MSBs are split into a cache line field r and a tag
of s-r (most significant)

Direct Mapping
Address Structure

V D Tag sr Lineor Slot r Word w

111 8 14 2

¥ Given a 24 bit address (to access 16Mb)
€ 2 bit word identifier (4 byte block)
¥ 22 bit block identifier

8 bit tag (=22-14)

14 bit slot or line
¥ No two blocks in the same line have the same Tag field
¥ Check contents of cache by finding line and checking Tag
3 Also need a Valid bit and a Dirty bit

Valid — Indicates if the slot holds a block belonging to the program being
executed

Dirty — Indicates if a block has been modified while in the cache. Will
need to be written back to memory before slot is reused for anot her
block
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Direct Mapping Example, 64K

Cache

Cache Memory Man Memory
Addr Tag WO W1 W2 W3 Addr (hex)  Data
0 00 F1| F2| F3| F4 8008880 F;
_ 1 F
; 1B 11| 12] 13|14 Line0 < | 000002 F3
3 000003 F4
. Line1 | 000004 AB
5 180004 11
. 1B0005 12
Linel 1B0006 13
1B0007 14
211

1B0007 = 0001 1011 0000 0000 0000 0111
Word = 11, Line = 0000 0000 0000 01, Tag= 0001 1011

Direct Mapping

Example ..

Origina Example,
64K Cache

with 4 words

per Block

Ling +

Word Data

0000 [ 13579246 | = ==
noo4d

TITTPTTT

-

11235813 p === = ===+ 16
-1

Line
lag Data Number
== 00 [ 13575246 | DOOO

11235813 | DDO1
1=

339C | FEDCBASE p=======+ 16 | FEDCBASE | DCET

FFFC 12345678 === =

1 (e

FErd | 11223544 = = =
FERC| 24682468

32 hits

16 MByie Main Memory

- ——16 12345678 | 3pEF

=== FF | 11223344 | 3FFE
13

#hits 32 bits

16 Kword Cache

20



Direct Mapping pros & cons

F$Simple
3¢ Inexpensive

FeFixed location for given block

[Allf a program accesses 2 blocks that map to the same
line repeatedly, cache misses are very high —
condition called thrashing

Fully Associative Mapping

3 A fully associative mapping scheme can overcome the
problems of the direct mapping scheme
®IA main memory block can load into any line of cache
BIMemory address is interpreted as tag and word
B Tag uniquely identifies block of memory
[lEvery line’s tag is examined for a match
R Also need a Dirty and Valid bit (not shown in examples)

#6 But Cache searching gets expensive!

Ideally need circuitry that can simultaneously examine all tags
for a match

[AlLots of circuitry needed, high cost

# Need replacement policies now that anything can get
thrown out of the cache (will look at last)

21



Fully Associative Cache
Organization

S4W,

/\J\_’—\ Cache Main Memory
Memory Address Tag Data Wi
| Tag [ word ] [ W1
W2 By
. Ly E
w

(hit in cache)

L (miss in cache)

Associative Mapping
Address Structure

_ Word

# 22 bit tag stored with each 32 bit block of data
# Compare tag field with tag entry in cache to check for hit

¥ Least significant 2 bits of address identify which 8 bit word
is required from 32 bit data block

¥ e.qg.
A Address: FFFFFC = 1111 1111 1111 1111 1111 1100
XITag: Left 22 bits, truncate on left:
e 11111111111211111111111
« 3FFFFF
N Address: 16339C = 0001 0110 0011 0011 1001 1100
XITag: Left 22 bits, truncate on left:
e 000101 1000 110011100111
* 058CE7
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Associative Mapping Example

Address Data

0000 T3579246 F - — =
1
1
— (e WY !
1
1
1
1
1
: Line
1 Daia Number
" E| 11223344 | 0000
- = == I5ECET| FERCEABE | 0001
- I
- - 1 1
163398 L
16339C | FEDCEASE | = 1o - 1
163340
- - ! !
==k = = GpFEFD| 33333333 | aFFD
I - a——|oooooo| 13579246 | 3FFE
U e — 4 —3rpErr| 24682468 | Sppr
[ '
1 1
P04 i 32his
: : : 16 Kwond Cache
1 1 1
[ T
~ + 00
[ T
FFFFFA | 33333333 =1 1 1
FFFFFG | 11223344 - — -k -1
FPFPEC | 24662468 k== =1

32 bits

16 MByte Main Memory

Set Associative Mapping

3 Compromise between fully-associative and direct-
mapped cache
Al Cache is divided into a number of sets
[AlEach set contains a number of lines
[BIA given block maps to any line in a specific set

XlUse direct -mapping to determine which set in the cache
corresponds to a set in memory

XIMemory block could then be in any line of that set
Rle.g. 2 lines per set

[X12 way associative mapping

[XIA given block can be in one of 2 lines in a specific set
Rle.g. K lines per set

XIK way associative mapping

[XIA given block can be in one of K lines in a specific set

XIMuch easier to simultaneously search one set than all lines

23



Set Associative Mapping

8 To compute cache set number:

[AlSetNum = j mod v
[Xlj = main memory block nhumber
Xlv = number of sets in cache

SetQ | Slot0
Slot 1
Setl | got2
Slot 3

Main Memory
Block O

Block 1

Block 2

Block 3

Block 4

Block 5

Two Way Set Associative

Cache Organization

Cache
Memory Address Tag It

T ——— | [
—

sl i w

Iy

Main Memory

24



Set Associative Mapping
Address Structure

Word

Tag 9 hit Set 13 hit 2 bit

¥ E.g. given a 13 bit set number for 24 bit address
¥ Use set field to determine cache set to look in
¥ Compare tag field of all slots in the set to see if we have a hit, e.g.:
®IAddress = 16339C = 0001 0110 0011 0011 1001 1100
XITag = 0 0010 1100 = 02C
XI1Set =0 1100 1110 0111 = OCE7
XIWord =00 =0
[AlAddress = 008004 = 0000 0000 1000 0000 0000 0100
XITag = 0 0000 0001 = 001
XISet = 0 0000 0000 0001 = 0001
XIWord =00 =0

Two Way Set Associative
Mapping Example

" ‘3“' T} - - - Error in book: 001 tag in cache
ano 1
! should be 02C (or come from a
Lon T T 1 .
: different memory block!)
Address jEEn H
008004— 11235813~ H _ s
Qooay 3FTTITIT . [i LR r\fufljlth;-‘ U:J? ?7?7‘7‘?7? -1
0004 | 11235813 0 5 E 0001
Address_ n2c 339-:_‘1-'1;:1.!{"-_\.*‘,98 j ———————— ‘;2-’: PJC-L‘ E7 i i
16339C— ' i} il il 1 L 4,
r== 15 1].2233:14 1FFE - _
FROoLLl2345678 = = = - - F=-001] 12345678 | 1pFr [1FF] 24683468 |-
. 1 1
1 Ybits 32bis Whits 32 bits :
Q000 ! 16 Kword Cache !
1 1
4 4 1 1
1FF 1 1
1 1
1 1
TEF | 11223344 === == 4 1
TEFC | 24682468 b = m e e e e e e e e e e mm— s

16 MByie Main Memory

32 hits
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K-Way Set Associative

8 Two-way set associative gives much better
performance than direct mapping

[~lJust one extra slot avoids the thrashing problem

8 Four-way set associative gives only slightly
better performance over two-way

#6 Further increases in the size of the set has little

effect other than increased cost of the
hardware!

Replacement Algorithms (1)
Direct mapping

#ENo choice

8 Each block only maps to one line
F Replace that line
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Replacement Algorithms (2)
Associative & Set Associative

# Algorithm must be implemented in hardware (speed)
¥ Least Recently used (LRU)
[Ae.g. in 2 way set associative, which of the 2 block is LRU?

XIFor each slot, have an extra bit, USE. Set to 1 when accessed, set
all others to 0.

[AIFor more than 2-way set associative, need a time stamp for
each slot - expensive
#6 First in first out (FIFO)
[BIReplace block that has been in cache longest
[lEasy to implement as a circular buffer
# Least frequently used
[BlReplace block which has had fewest hits
Need a counter to sum number of hits

¥ Random
&l Almost as good as LFU and simple to implement

Write Policy

3 Must not overwrite a cache block unless main
memory is up to date. l.e. if the “dirty” bit is
set, then we need to save that cache slot to
memory before overwriting it

8 This can cause a BIG problem

[AIMultiple CPUs may have individual caches
XIWhat if a CPU tries to read data from memory? It might be
invalid if another processor changed its cache for that
location!

[XICalled the cache coherency problem
[211/0 may address main memory directly too
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Write through

#6 Simplest technique to handle the cache coherency
problem - All writes go to main memory as well as
cache.

# Multiple CPUs must monitor main memory traffic
(snooping) to keep local cache local to its CPU up to
date in case another CPU also has a copy of a shared
memory location in its cache

#6 Simple but Lots of traffic

8 Slows down writes

# Other solutions: noncachable memory, hardware to
maintain coherency

Write Back

# Updates initially made in cache only

38 Dirty bit for cache slot is cleared when update occurs

# If block is to be replaced, write to main memory only if
dirty bit is set

#6 Other caches can get out of sync

# If 1/0 must access invalidated main memory, one
solution is for 1/0 to go through cache
IComplex circuitry

# Only ~15% of memory references are writes
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Cache Performance

# Two measures that characterize the performance of a
cache are the hit ratio and the effective access time

[AIHit Ratio = (Num times referenced words are in cache)

(Total number of memory accesses)

Eff. Access Time = (# hits)(TimePerHit)+(# misses) (TimePerMiss)

(Total number of memory accesses)

Cache Performance Example

38 Direct-Mapped Cache Block 0
Slot 0 Block 1

Slot 1 Block 2

Slot 2 Block 3

Slot 3 Block 4

Cache Memory Block 5

Cache access time = 80ns Block 6
Main Memory time = 2500 ns Block 7

Memory
0-15

16-31
32-47
48-63
64-79
80-95
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Cache Performance Example

¥ Sample program executes from memory location 48-95 once. Then
it executes from 15-31 in a loop ten times before exiting.

Event | Location Time Comment
1 miss |48 2500ns Memory block 3 to cache slot 3
15 hits | 49-63 80nsx15=1200ns
1 miss |64 2500ns Memory block 4 to cache slot 0
15 hits | 65-79 80nsx15=1200ns
1 miss | 80 2500ns Memory block 5 to cache slot 1
15 hits | 81-95 80nsx15=1200ns
1 miss | 15 2500ns Memory block 0 to cache slot 0
1 miss | 16 2500ns Memory block 1 to cache slot 1
15 hits | 17-31 80nsx15=1200ns
9hits | 15 80nsx9=720ns Last nine iterations of loop
144 hits| 16-31 80nsx144=12,240ns| Last nine iterations of loop
Total hits =213  Total misses = 5

Cache Performance Example

36 Hit Ratio: 213/ 218 = 97.7%

#6 Effective Access Time: ((213)*(80ns)+(5)(2500ns)) /
218 =136 ns

3 Although the hit ratio is high, the effective access time
in this example is 75% longer than the cache access
time due to the large amount of time spent during a
cache miss

¥ What sequence of main memory block accesses would
result in much worse performance?




