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Chapter 4
Internal Memory

Characteristics

z Location
yCPU, Internal, External

z Capacity
yWord size, number of 

words

z Unit of transfer
yWord on bus, block, cluster

z Access method
yDirect, Random, 

Associative, Sequential

z Performance
yAccess, Cycle, Transfer 

time

z Physical type
ySemiconductor, magnetic, 

optical

z Physical characteristics
yVolatile , Erasable

z Organization
yPhysical arrangement of 

bits into words
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Access Methods (1)
zSequential
yStart at the beginning and read through in order
yAccess time depends on location of data and 

previous location
ye.g. tape

zDirect
yIndividual blocks have unique address
yAccess is by jumping to vicinity plus sequential 

search
yAccess time depends on location and previous 

location
ye.g. disk

Access Methods (2)
zRandom
yIndividual addresses identify locations exactly
yAccess time is independent of location or previous 

access
ye.g. RAM

zAssociative
yData is located by a comparison with contents of a 

portion of the store
yAccess time is independent of location or previous 

access
ye.g. cache
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Memory Hierarchy

zRegisters
yIn CPU

zInternal or Main memory
yMay include one or more levels of cache
y“RAM”

zExternal memory
yBacking store

Performance
zAccess time
yTime between presenting the address and getting 

the valid data

zMemory Cycle time
yTime may be required for the memory to “recover” 

before next access
yCycle time is access + recovery

zTransfer Rate
yRate at which data can be moved
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Physical Characteristics

zDecay
zVolatility
zErasable
zPower consumption

The Bottom Line

z How much?
yCapacity

z How fast?
yTime is money

z How expensive?

z Tradeoffs among all of these
yE.g. Faster = More expensive, More = Less cost (per bit) but 

slower
ySolution : Memory Hierarchy
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Hierarchy List

z Registers
z L1 Cache
z L2 Cache
z Main memory
z Disk cache
z Disk
z Optical
z Tape

z As one goes down the 
hierarchy
yDecreasing cost per bit
yIncreasing capacity
yIncreasing access time
yDecreasing frequency of 

access of the memory by 
the processor – locality of 
reference

So you want fast?

zIt is possible to build a computer which uses 
only static RAM (see later)
zThis would be very fast
zThis would need no cache
yHow can you cache cache?

zThis would cost a very large amount



6

Locality of Reference

z Temporal Locality
yPrograms tend to reference the same memory locations at a 

future point in time
yDue to loops and iteration, programs spending a lot of time in 

one section of code

z Spatial Locality
yPrograms tend to reference memory locations that are near 

other recently-referenced memory locations
yDue to the way contiguous memory is referenced, e.g. an array 

or the instructions that make up a program

z Locality of reference does not always hold, but it usually 
holds

Cache Example

zConsider a Level 1 cache capable of holding 
1000 words with a 0.1 µs access time.  Level 2 
is memory with a 1 µs access time.  
zIf 95% of memory access is in the cache:
yT=(0.95)*(0.1 µs) + (0.05)*(0.1+1 µs) = 0.15 µs

zIf 5% of memory access is in the cache:
yT=(0.05)*(0.1 µs) + (0.95)*(0.1+1 µs) = 1.05 µs

zWant as many cache hits as possible!

0% 100%

0.1 µs

1.1 µs
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Semiconductor Memory

zRAM 
yMisnamed as all semiconductor memory is random 

access
yRead/Write
yVolatile
yTemporary storage
yTwo main types: Static or Dynamic

Dynamic RAM

z Bits stored as charge in capacitors
z Charges leak
z Need refreshing even when powered
z Simpler construction
z Smaller per bit
z Less expensive
z Need refresh circuits (every few milliseconds)
z Slower
z Main memory
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Static RAM

z Bits stored as on/off switches via flip-flops
z No charges to leak
z No refreshing needed when powered
z More complex construction
z Larger per bit
z More expensive
z Does not need refresh circuits
z Faster
z Cache

Read Only Memory (ROM)

zPermanent storage
zMicroprogramming 
zLibrary subroutines
zSystems programs (BIOS)
zFunction tables
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Types of ROM
zWritten during manufacture
yVery expensive for small runs

zProgrammable (once)
yPROM
yNeeds special equipment to program

zRead “mostly”
yErasable Programmable (EPROM)
⌧Erased by UV

yElectrically Erasable (EEPROM)
⌧Takes much longer to write than read

yFlash memory
⌧Erase whole memory electrically

Chip Organization

zConsider an individual memory cell.  Select line 
indicates if active, Control line indicates read or 
write.

Cell
Select

Control

Data In / Data Out (sense)

Memory Cell Operations



10

Organization in detail

z Some possible ways to create a 16Mbit chip
y1M of 16 bit words
y16 1Mbit chips, one chip for each bit of the desired 16 bit word
yA 2048 x 2048 x 4bit array.  Consider a 4 bit word size, so 

4,194,304 addressable locations
⌧Reduces number of address pins
⌧Multiplex row address and column address
⌧This example: 11 pins to address (211=2048), multiplex over the pins 

twice to get 22 bits (222 = 4M) for each 4 bit word
⌧To access memory, first send an address for the row (RAS), then 

send the address for the column (CAS). Together this activates t he 
SELECT line.  Need four lines for the Data In/Sense lines.
⌧Adding one more pin doubles range of values so 4 times the capacity 

as we increase the dimensions

Typical 16 Mb DRAM (4M x 4)

A0
A1
…
A21
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Refreshing

zRefresh circuit included on chip
zDisable chip
zCount through rows
zRead & Write back
zTakes time
zSlows down apparent performance

Packaging

CE = Chip Enable, Vss = Ground, Vcc=+V, OE = Output Enable, 
WE = Write Enable
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Module 
Organization

yAlternate Organization 
Using Modules to 
reference 256K 8 bit 
words

y8 256K chip for each bit 
of the desired 8 bit word

yFull 18 bit address 
presented to each module, 
a single bit output.  Data 
distributed across all chips 
for a single word

Module Organization – Larger 
Memories

zCan piece together existing modules to make 
even larger memories
zConsider previous 256K x 8bit system
yIf we want 1M of memory, can tie together four of 

the 256K x 8bit modules
yHow to tell which of the four modules contains the 

data we want?
yNeed 20 address lines to reference 1M
⌧Use lower 18 bits to reference address as before
⌧Use higher 2 bits into the Chip Select to enable only one of 

the four memory modules
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Module Organization (2)

Error Correction

zHard Failure
yPermanent defect

zSoft Error
yRandom, non-destructive
yNo permanent damage to memory

zHamming error correcting code one technique 
for detecting errors
ySimilar to parity bit, but contains enough information 

to correct data with single bit errors
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Cache

zSmall amount of fast memory
zSits between normal main memory and CPU
zMay be located on CPU chip or module

Cache operation - overview

zCPU requests contents of memory location
zCheck cache for this data
zIf present, get from cache (fast)
zIf not present, read required block from main 

memory to cache
zThen deliver from cache to CPU
zCache includes tags to identify which block of 

main memory is in each cache slot



15

Block 0
Block 1
…

Block (2n/K)-1

Cache Design
z If memory contains 2n addressable words
yMemory can be broken up into blocks with K words per block.  

Number of blocks = 2n / K 
yCache consists of C lines or slots, each consisting of K words
yC << M
yHow to map blocks of memory to lines in the cache?

Memory

Cache Line 0
Line 1
…

Line C-1

Cache Design

zSize
zMapping Function
zReplacement Algorithm
zWrite Policy
zBlock Size
zNumber of Caches
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Size does matter

zCost
yMore cache is expensive

zSpeed
yMore cache is faster (up to a point)
yChecking cache for data takes time
⌧Adding more cache would slow down the process of looking 

for something in the cache

Typical Cache Organization
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Mapping Function

zWe’ll use the following configuration example
yCache of 64KByte
yCache line / Block size is 4 bytes
⌧i.e. cache is 16,385 (214) lines of 4 bytes

yMain memory of 16MBytes
⌧24 bit address 
⌧(224=16M)
⌧16Mbytes / 4bytes-per-block  à 4 MB of Memory Blocks

ySomehow we have to map the 4Mb of blocks in 
memory onto the 16K of lines in the cache.  Multiple 
blocks will have to map to the same line in the cache!

Direct Mapping

zSimplest mapping technique - each block of 
main memory maps to only one cache line
yi.e. if a block is in cache, it must be in one specific 

place

zFormula to map a memory block to a cache line:
yi = j mod c
⌧i=Cache Line Number
⌧j=Main Memory Block Number
⌧c=Number of Lines in Cache
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Direct Mapping with C=4

z Shrinking our example to a cache line size of 4 slots 
(each slot/line/block still contains 4 words):
yCache Line Memory Block Held
⌧0 0, 4, 8, …
⌧1 1, 5, 9, …
⌧2 2, 6, 10, …
⌧3 3, 7, 11, …

yIn general:
⌧0 0, C, 2C, 3C, …
⌧1 1, C+1, 2C+1, 3C+1, …
⌧2 2, C+2, 2C+2, 3C+2, …
⌧3 3, C+3, 2C+3, 3C+3, …

Direct Mapping with C=4

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Main
MemorySlot 0

Slot 1

Slot 2

Slot 3

Cache Memory

Valid   Dirty    Tag

Don’t forget – each slot contains
K words (e.g. 4 words)
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Direct Mapping Address 
Structure

zAddress is in two parts
yLeast Significant w bits identify unique word within a 

cache line
yMost Significant s bits specify one memory block
yThe MSBs are split into a cache line field r and a tag 

of s-r (most significant)

Direct Mapping
Address Structure

Tag  s-r Line or Slot  r Word  w

8 14 2

z Given a 24 bit address (to access 16Mb)
z 2 bit word identifier (4 byte block)
z 22 bit block identifier
y 8 bit tag (=22-14)
y 14 bit slot or line

z No two blocks in the same line have the same Tag field
z Check contents of cache by finding line and checking Tag
z Also need a Valid bit and a Dirty bit
y Valid – Indicates if the slot holds a block belonging to the program being 

executed
yDirty – Indicates if a block has been modified while in the cache.  Will 

need to be written back to memory before slot is reused for anot her 
block

V  D

11
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Direct Mapping Example, 64K 
Cache

Main MemoryCache Memory
Addr Tag        W0  W1  W2  W3

0
1
2
3
4
5
..
..

214-1

Addr (hex)        Data

000000                 F1
000001 F2
000002                 F3
000003                 F4
000004                 AB
…
1B0004                11
1B0005                12
1B0006                13
1B0007                14

00          F1    F2   F3    F4

1B0007 = 0001 1011 0000 0000 0000 0111
Word = 11, Line = 0000 0000 0000 01, Tag= 0001 1011

1B          11   12    13    14 Line 0

Line 1

Line 1

Direct Mapping
Example

Original Example,
64K Cache
with 4 words
per Block
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Direct Mapping pros & cons

zSimple
zInexpensive
zFixed location for given block
yIf a program accesses 2 blocks that map to the same 

line repeatedly, cache misses are very high –
condition called thrashing

Fully Associative Mapping

z A fully associative mapping scheme can overcome the 
problems of the direct mapping scheme 
yA main memory block can load into any line of cache
yMemory address is interpreted as tag and word
yTag uniquely identifies block of memory
yEvery line’s tag is examined for a match
yAlso need a Dirty and Valid bit (not shown in examples)

z But Cache searching gets expensive!
yIdeally need circuitry that can simultaneously examine all tags 

for a match
yLots of circuitry needed, high cost

z Need replacement policies now that anything can get 
thrown out of the cache (will look at last)
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Fully Associative Cache 
Organization

Tag   22 bit
Word
2 bit

Associative Mapping
Address Structure

z 22 bit tag stored with each 32 bit block of data
z Compare tag field with tag entry in cache to check for hit
z Least significant 2 bits of address identify which 8 bit word 

is required from 32 bit data block
z e.g.
yAddress: FFFFFC = 1111 1111 1111 1111 1111 1100
⌧Tag: Left 22 bits, truncate on left:

• 11 1111 1111 1111 1111 1111
• 3FFFFF

yAddress: 16339C = 0001 0110 0011 0011 1001 1100
⌧Tag: Left 22 bits, truncate on left:

• 00 0101 1000 1100 1110 0111
• 058CE7
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Associative Mapping Example

F
F
F

Set Associative Mapping

z Compromise between fully-associative and direct-
mapped cache
yCache is divided into a number of sets
yEach set contains a number of lines
yA given block maps to any line in a specific set
⌧Use direct -mapping to determine which set in the cache 

corresponds to a set in memory
⌧Memory block could then be in any line of that set

ye.g. 2 lines per set
⌧2 way associative mapping
⌧A given block can be in one of 2 lines in a specific set

ye.g. K lines per set
⌧K way associative mapping
⌧A given block can be in one of K lines in a specific set
⌧Much easier to simultaneously search one set than all lines
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Set Associative Mapping

zTo compute cache set number:
ySetNum = j mod v
⌧j = main memory block number
⌧v = number of sets in cache

Block 0

Block 1

Block 2

Block 3

Main Memory

Slot 0

Slot 1

Slot 2

Slot 3

Set 0

Set 1 Block 4

Block 5

Two Way Set Associative 
Cache Organization
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Set Associative Mapping
Address Structure

z E.g. given a 13 bit set number for 24 bit address
z Use set field to determine cache set to look in
z Compare tag field of all slots in the set to see if we have a hit, e.g.:
yAddress = 16339C = 0001  0110 0011 0011 1001 1100
⌧Tag = 0 0010 1100 = 02C
⌧Set = 0 1100 1110 0111 = 0CE7
⌧Word = 00  = 0

yAddress = 008004 = 0000 0000 1000 0000 0000 0100
⌧Tag = 0 0000 0001 = 001
⌧Set = 0 0000 0000 0001 = 0001
⌧Word = 00 = 0

Tag  9 bit Set  13 bit
Word
2 bit

Two Way Set Associative 
Mapping Example

Address
16339C

Error in book:  001 tag in cache 
should be 02C (or come from a 
different memory block!)

Address
008004 11235813
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K-Way Set Associative

zTwo-way set associative gives much better 
performance than direct mapping
yJust one extra slot avoids the thrashing problem

zFour-way set associative gives only slightly 
better performance over two-way
zFurther increases in the size of the set has little 

effect other than increased cost of the 
hardware!

Replacement Algorithms (1)
Direct mapping

zNo choice
zEach block only maps to one line
zReplace that line
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Replacement Algorithms (2)
Associative & Set Associative
z Algorithm must be implemented in hardware (speed)
z Least Recently used (LRU)
ye.g. in 2 way set associative, which of the 2 block is LRU?
⌧For each slot, have an extra bit, USE.  Set to 1 when accessed, set 

all others to 0.
yFor more than 2-way set associative, need a time stamp for 

each slot - expensive

z First in first out (FIFO)
yReplace block that has been in cache longest
yEasy to implement as a circular buffer

z Least frequently used
yReplace block which has had fewest hits
yNeed a counter to sum number of hits

z Random
yAlmost as good as LFU and simple to implement

Write Policy

zMust not overwrite a cache block unless main 
memory is up to date.  I.e. if the “dirty” bit is 
set, then we need to save that cache slot to 
memory before overwriting it
zThis can cause a BIG problem
yMultiple CPUs may have individual caches
⌧What if a CPU tries to read data from memory?  It might be 

invalid if another processor changed its cache for that 
location!
⌧Called the cache coherency problem

yI/O may address main memory directly too
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Write through

z Simplest technique to handle the cache coherency 
problem - All writes go to main memory as well as 
cache.  

z Multiple CPUs must monitor main memory traffic 
(snooping) to keep local cache local to its CPU up to 
date in case another CPU also has a copy of a shared 
memory location in its cache

z Simple but Lots of traffic
z Slows down writes

z Other solutions:  noncachable memory, hardware to 
maintain coherency

Write Back

z Updates initially made in cache only
z Dirty bit for cache slot is cleared when update occurs
z If block is to be replaced, write to main memory only if 

dirty bit is set
z Other caches can get out of sync
z If I/O must access invalidated main memory, one 

solution is for I/O to go through cache
yComplex circuitry

z Only ~15% of memory references are writes
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Cache Performance

z Two measures that characterize the performance of a 
cache are the hit ratio and the effective access time
yHit Ratio = (Num times referenced words are in cache) 

-----------------------------------------------------
(Total number of memory accesses)

Eff. Access Time = (# hits)(TimePerHit)+(# misses) (TimePerMiss)
--------------------------------------------------------

(Total number of memory accesses)

Cache Performance Example

zDirect-Mapped Cache Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Memory
0-15

Slot 0

Slot 1

Slot 2

Slot 3

Cache Memory

Cache access time = 80ns
Main Memory time = 2500 ns

16-31

32-47

48-63

64-79

80-95

…
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Cache Performance Example

z Sample program executes from memory location 48-95 once. Then 
it executes from 15-31 in a loop ten times before exiting.

Cache Performance Example

z Hit Ratio: 213 / 218 = 97.7%
z Effective Access Time:  ((213)*(80ns)+(5)(2500ns)) / 

218 = 136 ns

z Although the hit ratio is high, the effective access time 
in this example is 75% longer than the cache access 
time due to the large amount of time spent during a 
cache miss

zWhat sequence of main memory block accesses would 
result in much worse performance?


