
1

William Stallings
Computer Organization
and Architecture

Chapter 3
Instruction Cycle Review
System Buses

2

Architecture Review - Program
Concept

!Hardwired systems are inflexible
"Lots of work to re-wire, or re-toggle

!General purpose hardware can do different
tasks, given correct control signals

!Instead of re-wiring, supply a new set of control
signals

Instruction Codes
Instruction
Interpreter

Control
Signals

General
Purpose
Logic

Data

Results

What is a program?

!Software
"A sequence of steps
"For each step, an arithmetic or logical operation is

done
"For each operation, a different set of control signals

is needed – i.e. an instruction

3

Function of Control Unit

!For each operation a unique code is provided
"e.g. ADD, MOVE

!A hardware segment accepts the code and
issues the control signals

!We have a computer!

Components

!Central Processing Unit
"Control Unit
"Arithmetic and Logic Unit

!Data and instructions need to get into the CPU
and results out
"Input/Output

!Temporary storage of code and results is
needed
"Main memory

4

Computer Components:
Top Level View

Simplified Instruction Cycle

!Two steps:
"Fetch
"Execute

5

Fetch Cycle

!Program Counter (PC) holds address of next
instruction to fetch

!Processor fetches instruction from memory
location pointed to by PC

!Increment PC
"Unless told otherwise

!Instruction loaded into Instruction Register (IR)
!Processor interprets instruction and performs

required actions

Execute Cycle

!Processor-memory
"data transfer between CPU and main memory

!Processor I/O
"Data transfer between CPU and I/O module

!Data processing
"Some arithmetic or logical operation on data

!Control
"Alteration of sequence of operations
"e.g. jump

!Combination of above

6

Hypothetical Machine

! Instruction Format - Address range?

! Integer Format - Data range?

! Registers
"PC = Program Counter, IR = Instruction Register, AC =

Accumulator

! Partial List of Opcodes
"0001 = Load AC from Memory
"0010 = Store AC to Memory
"0101 = Add to AC from Memory

Opcode Address

S Magnitude

0 3 4 15

0 1 15

Example of Program Execution

7

Modifications to Instruction
Cycle

! Simple Example
"Always added one to PC
"Entire operand fetched with instruction

! More complex examples
"Might need more complex instruction address calculation

⌧Consider a 64 bit processor, variable length instructions

"Instruction set design might require repeat trip to memory to
fetch operand
⌧In particular, if memory address range exceeds word size

"Operand store might require many trips to memory
⌧Vector calculation

Instruction Cycle -
State Diagram

Start Here

8

Introduction to Interrupts
! We will have more to say about interrupts later!
! Interrupts are a mechanism by which other modules (e.g.

I/O) may interrupt normal sequence of processing
! Four general classes of interrupts

"Program - e.g. overflow, division by zero
"Timer

⌧Generated by internal processor timer
⌧Used in pre-emptive multi-tasking

"I/O - from I/O controller
"Hardware failure

⌧e.g. memory parity error

! Particularly useful when one module is much slower than
another, e.g. disk access (milliseconds) vs. CPU
(microseconds or faster)

Interrupt Examples

9

Interrupt Cycle

! Added to instruction cycle
! Processor checks for interrupt

"Indicated by an interrupt signal

! If no interrupt, fetch next instruction
! If interrupt pending:

"Suspend execution of current program
"Save context (what does this mean?)
"Set PC to start address of interrupt handler routine
"Process interrupt
"Restore context and continue interrupted program

Instruction Cycle (with
Interrupts) - State Diagram

10

Multiple Interrupts

!Disable interrupts – Sequential Processing
"Processor will ignore further interrupts whilst

processing one interrupt
"Interrupts remain pending and are checked after first

interrupt has been processed
"Interrupts handled in sequence as they occur

!Define priorities – Nested Processing
"Low priority interrupts can be interrupted by higher

priority interrupts
"When higher priority interrupt has been processed,

processor returns to previous interrupt

Multiple Interrupts - Sequential

Disabled Interrupts – Nice and Simple

11

Multiple Interrupts - Nested

How to handle state with an arbitrary number of interrupts?

Sample Time Sequence of
Multiple Interrupts

User Program Printer ISR Comm ISR Disk ISR

t=10

t=40

t=15

t=25
t=25

t=35

t=0

Priority 2 Priority 5 Priority 4

Disk can’t interrupt higher priority Comm
Note: Often low numbers are higher priority

12

Connecting

!All the units must be connected
!Different type of connection for different type of

unit
"Memory
"Input/Output
"CPU

Memory Connection

! Memory typically consists of N words of equal length
addressed from 0 to N-1

! Receives and sends data
"To Processor
"To I/O Device

! Receives addresses (of locations)
! Receives control signals

"Read
"Write
"Timing

13

Input/Output Connection(1)

! Functionally, similar to memory from internal viewpoint
! Instead of N words as in memory, we have M ports
! Output

"Receive data from computer
"Send data to peripheral

! Input
"Receive data from peripheral
"Send data to computer

Input/Output Connection(2)

!Receive control signals from computer
!Send control signals to peripherals

"e.g. spin disk

!Receive addresses from computer
"e.g. port number to identify peripheral

!Send interrupt signals (control)

14

CPU Connection

!Sends control signals to other units
!Reads instruction and data
!Writes out data (after processing)
!Receives (& acts on) interrupts

Buses

!There are a number of possible interconnection
systems. The most common structure is the
bus

!Single and multiple BUS structures are most
common

!e.g. Control/Address/Data bus (PC)
!e.g. Unibus (DEC-PDP) – replaced the Omnibus

15

What is a Bus?

! A communication pathway connecting two or more
devices

! Usually broadcast
"Everyone listens, must share the medium
"Master – can read/write exclusively, only one master
"Slave – everyone else. Can monitor data but not produce

! Often grouped
"A number of channels in one bus
"e.g. 32 bit data bus is 32 separate single bit channels

! Power lines may not be shown
! Three major buses: data, address, control

Bus Interconnection Scheme

16

Data Bus

!Carries data
"Remember that there is no difference between

“data” and “instruction” at this level

!Width is a key determinant of performance
"8, 16, 32, 64 bit
"What if the data bus is 8 bits wide but instructions

are 16 bits long?
"What if the data bus is 64 bits wide but instructions

are 16 bits long?

Address bus

! Identify the source or destination of data
"In general, the address specifies a specific memory address or a

specific I/O port
! e.g. CPU needs to read an instruction (data) from a

given location in memory
! Bus width determines maximum memory capacity of

system
"8086 has 20 bit address bus but 16 bit word size for 64k directly

addressable address space
"But it could address up to 1MB using a segmented memory

model
⌧RAM: 0 – BFFFF, ROM: C0000 - FFFFF
⌧DOS only allowed first 640K to be used, remaining memory for

BIOS, hardware controllers. Needed High-Memory Manager to
“break the 640K barrier”

17

Control Bus

! Control and timing information
"Determines what modules can use the data and address lines
"If a module wants to send data, it must (1) obtain permission to

use the bus, and (2) transfer data – which might be a request
for another module to send data

! Typical control lines
"Memory read
"Memory write
"I/O read
"I/O write
"Interrupt request
"Interrupt ACK
"Bus Request
"Bus Grant
"Clock signals

Big and Yellow?

!What do buses look like?
"Parallel lines on circuit boards
"Ribbon cables
"Strip connectors on mother boards

⌧e.g. PCI

"Sets of wires

!Limited by physical proximity – time delays, fan
out, attenuation are all factors for long buses

18

Single Bus Problems

! Lots of devices on one bus leads to:
"Propagation delays

⌧Long data paths mean that co-ordination of bus use can adversely affect
performance – bus skew, data arrives at slightly different times

⌧If aggregate data transfer approaches bus capacity. Could increase bus
width, but expensive

"Device speed
⌧Bus can’t transmit data faster than the slowest device
⌧Slowest device may determine bus speed!

• Consider a high-speed network module and a slow serial port on the same
bus; must run at slow serial port speed so it can process data directed for it

"Power problems
! Most systems use multiple buses to overcome these

problems

Traditional (ISA)
(with cache)

Buffers data
transfers
between
system,
expansion bus

This approach breaks down as I/O devices need higher performance

19

High Performance Bus –
Mezzanine Architecture

Addresses higher speed I/O devices by moving up in the hierarchy

20

Direct Memory Access

21

Bus Types

!Dedicated
"Separate data & address lines

!Multiplexed
"Shared lines
"Consider shared address, data lines

⌧Need separate Address valid or Data valid control line
⌧Time division multiplexing in this case

"Advantage - fewer lines
"Disadvantages

⌧More complex control
⌧Ultimate performance

Bus Arbitration

!More than one module may want to control the
bus
"e.g. I/O module may need to send data to memory

and to the CPU
!But only one module may control bus at one

time
"Arbitration decides who gets to use the bus
"Arbitration must be fast or I/O devices might lose

data
!Arbitration may be centralized or distributed

22

Centralized Arbitration

!Single hardware device is responsible for
allocating bus access
"Bus Controller
"Arbiter

!May be part of CPU or separate

Distributed Arbitration

! No single arbiter
! Each module may claim the bus
! Proper control logic on all modules so they behave to

share the bus

! Purpose of both distributed and centralized is to
designate the master

! The recipient of a data transfer is the slave

! Many types of arbitration algorithms: round-robin,
priority, etc.

23

Daisy Chaining
of devices
What if a device breaks? Devices to left higher priority

Bus Arbitration
Implementations – Centralized

! Centralized
"If a device wants the bus, assert bus request
"Arbiter decides whether or not to send bus grant
"Bus grant travels through daisy-chain of devices
"If device wants the bus, it uses it and does not propagate bus

grant down the line. Otherwise it propagates the bus grant.
"Electrically close devices to arbiter get first priority

! Centralized with Multiple Priority Levels
"Can add multiple priority levels, grants, for more flexible

system. Arbiter can issue bus grant on only highest priority line

24

Bus Arbitration Implementation
- Decentralized

!Decentralized
"If don’t want the bus, propagate bus grant down the

line
"To acquire bus, see if bus is idle and bus grant is on

⌧If bus grant is off, may not become master, propagate
negative bus grant

⌧If bus grant is on, propagate negative bus grant

"When dust settles, only one device has bus grant
"Asserts busy on and begins transfer
"Leftmost device that wants the bus gets it

Timing

!Co-ordination of events on bus
!Synchronous

"Events determined by clock signals
"Control Bus includes clock line
"A single 1-0 is a bus cycle
"All devices can read clock line
"Usually sync on leading edge
"Usually a single cycle for an event

25

In reality, the clock is a bit more sawtoothed

100 million cycles per second
1 cycle in (1/100,000,000) seconds = 0.0000001s = 10 ns

Synchronous Timing Diagram
Read Operation Timing

delay

Indicates read/address lines valid, noticed by memory

Indicates we want to read, not write

Address from memory we want

Data from memory

Indicates data lines valid

26

Synchronous - Disadvantages

!Although synchronous clocks are simple, there
are some disadvantages
"Everything done in multiples of clock, so something

finishing in 3.1 cycles takes 4 cycles
"With a mixture of fast and slow devices, we have to

wait for the slowest device
⌧Faster devices can’t run at their capacity, all devices are tied

to a fixed clock rate
⌧Consider memory device speed faster than 10ns, no

speedup increase for 100Mhz clock

!One solution: Use asynchronous bus

Asynchronous Bus

!No clock
!Occurrence of one event on the bus follows and

depends on a previous event
!Requires tracking of state, hard to debug, but

potential for higher performance

!Also used with networking
"Problem with “drift” and loss of synchronization
"Some use self-clocking codes, e.g. Ethernet

27

Asynchronous Timing Diagram

Master sync

Slave sync

Asserted once read/address lines stabilize

Slave = memory, ACK’s master sync
Master reads the data from the data bus

Slave places requested data on bus

Deasserted when finished reading

