
CS221 
Miscellaneous x86 Instructions 
 
Multiplication and Division – Chapter 7 
 
The MUL instruction performs an unsigned multiplication between an 8, 16, or 32 bit 
operand with the AL, AX, or EAX register.  The instruction formats allowed are: 
 
 MUL register 
 MUL memory 
 
Notice there is no MUL instruction for an immediate value, so if you want to multiply by 
a constant then you must first MOV the constant to some other register or memory 
location. 
 
MUL is a bit tricky because exactly what gets multiplied depends upon the operand.  
Here are three examples.  Note that the product occupies more bits than the operands, and 
in some cases we modify the DX register: 
 
 MUL bl  ;  AX = AL * BL 
 MUL bx  ;  DX:AX = AX * BX 
 MUL ebx  ;  EDX:EAX = EAX * EBX 
 
Be careful to note that the contents of the EDX register may change as a side effect to 
store the high bits of the multiplication.  The Carry and Overflow flags are set if the 
upper half of the product is not zero. 
 
The following multiplies AX * 160: 
 
 PUSH BX  ; Save values in these registers 
 PUSH DX 

MOV BX, 160 
MUL BX 
POP DX  ; Restore values in these registers 
POP BX  ; Ignore any possible high bits stored in DX 

 
The MUL instruction performs unsigned multiplication.  For signed multiplication, use 
the IMUL instruction.  The results are identical. 
 
Example: 
 
 mov AX, 5 
 mov BX, -1 
 IMUL BX  ; AX = -5 or FFFB 
  
 



 mov AX, 5 
 mov BX, -1 
 MUL BX  ; Treats BX as unsigned int, or FFFF = 65535 
    ; DX:AX = 4FFFB = 327,675 = 65535*5 
 
Division operates in a manner similar to multiplication.  DIV performs unsigned integer 
division on either a 8, 16, or 32 bit value.  The quotient is stored in the AL/AX/EAX 
register while the remainder is stored in the AH, DX, or EDX register: 
 
 DIV bl   ; AL = AX / BL  AH = AX % BL 
 DIV bx  ; AX = (DX:AX) / BX DX = (DX:AX) % BX 
 DIV ebx  ; EAX = (EDX:EAX) / EBX EDX = (EDX:EAX) % EBX 
 
Here are some examples: 
 
 mov AX, 10 
 mov BL, 2 
 div BL   ; AH = 0, AL = 5 
 
 mov DX, 0 
 mov AX, 65535 
 mov BX, 4 
 div BX   ; DX = 3,  AX = 16383 
 
Do you see a problem here? 
 
 mov AX, 0FFFFh 
 mov BL, 1 
 div BL   ; AH = 0?,  AL = ? 
 
In this last case, we try to set AL = AX/BL.  But AX/1 does not fit into AL.  This causes 
a division overflow error that can crash the program. 
 

 
 
The IDIV instruction operates in a manner similar to DIV, except it performs a signed 
integer division instead of unsigned. 
 
 



Local Variables – Chapter 8 
 
In the preceding lectures we have declared all variables in the data segment.  These are 
considered static global variables.  They are global because they are accessible from 
anywhere in the program.  They are static because the variables “live” throughout the 
lifetime of the entire program. 
 
In contrast, local variables are: 

•  Accessible only by the procedure they are defined in 
•  Variable “dies” when the procedure exits 
•  More efficient use of memory than global since the storage space can be released 

and made available for new variables 
•  Same variable name can appear in multiple procedures without a name conflict 

 
As we have seen before when discussing the theory with the Null & Lobur textbook, 
local variables are created on the runtime stack.   
 
To declare local variables in MASM, use the LOCAL directive: 
 
 LOCAL varname:vartype [, varname:vartype] 
 
For arrays, use:   LOCAL varname[SIZE]:varitype 
 
Here are some examples: 
 
 MySub proc 
  LOCAL var1:BYTE    ; one byte 
  LOCAL var2:WORD, var3: DWORD ; a word, a dword 
  LOCAL tempArray[10]:DWORD  ; Array of 10 dword’s 
  … 
  ret 
 MySub endp 
 
 
What does the assembler actually generate for the directive?  Here is a code example and 
the corresponding disassembly taken from Visual Studio’s debugger: 
 
myproc proc 
 LOCAL var1:WORD 
 LOCAL var2:WORD 
  
 ; Body of code here 
 
 ret 
myproc endp 
 



Here is the disassembly: 
 
myproc proc 

push ebp 
mov ebp, esp 
add esp, 0FCh   ; Add -4 to ESP 
 
; Body of code 
 
mov esp, ebp    
pop ebp   ; Restore original ESP, EBP 
ret 

 
The ADD instruction adds -4 to ESP, moving it downward and creating an opening in the 
stack between ESP and EBP to store two local variables of size word as illustrated in the 
following diagrams.  When we first enter the procedure, the stack looks something like 
the following, with the return address of the caller placed on the stack: 
 
 
 
 
 
 
 
 
 
 
 
 
 
The first thing we do is push the existing EBP value on the stack, which decrements the 
ESP by the size of the EBP register: 
 
 
 
 
 
 
 
 
 
 
 
 
Next we copy the value of ESP into EBP, which makes EBP point to the same thing as 
ESP: 
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Next we add -4 to ESP, which is a large enough of an offset to store two words.  The 
local variables of size word.   The variables var1 and var2 are stored here: 
 
 
 
 
 
 
 
 
 
 
 
 
 
We can now refer to the local variables via [EBP-2], [EBP-4], or even via absolute 
address if we wish.  When the procedure exits, the first thing we do is move EBP to ESP, 
which has the effect of popping off all the local variables we allocated: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Then we POP EBP, which restores into EBP the original value that it contained: 
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Finally, we execute the RET instruction, which pops off the return address into EIP so 
that we continue execution where we left off. 
 
Within a procedure we can use stack-created variables much as we would use global 
variables.  One exception is to get the offset of a variable.  We can no longer use the 
OFFSET directive, as this only applies to global variables.  OFFSET returns the distance 
from the start of the data segment, which is constant and known at assembly time.  
However, the address of an operand created on the stack could be anywhere in memory.  
We can still get its address though, using the LEA instruction, Load Effective Address: 
 
Format:  
  LEA reg, memoperand 
 
  Loads the address of memoperand into the register reg. 
 
Example: 
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include irvine32.inc 
 
.code 
main proc 
 call myproc  
 exit 
main endp 
 
myproc proc  
 LOCAL mystring[50]:BYTE 
  
 lea edx, mystring ; offset of mystring copied to EDX 
 mov ecx, 50 
 call readstring  ; Invoke Irvine readstring method 
 call crlf 
 call writestring ; Output string from mystring 
  
 mov ecx, 49 
 lea edx, mystring 
 mov al, 'Z' 
L: mov [edx],al  ; Fill mystring with Z's 
 inc edx 
 loop L 
 mov al, 0 
 mov [edx], al  ; Null at end 
 call crlf 
 lea edx, mystring ; Restore EDX to beginning of mystring data 
area 
 call writestring ; Output string 
  
 ret 
myproc endp 
 
end main 

 
 
This example waits for the user to input data, outputs it, then fills the buffer with Z’s and 
outputs it again.    Note that in the above example, I copied ‘Z’ into AL and then moved 
AL to [EDX].   This tells the assembler to only move one byte worth of data.  I could also 
have used the BYTE PTR directive instead, as illustrated in the following equivalent 
code: 
 
L: mov [edx],byte ptr 'Z' ; Fill mystring with Z's 
 inc edx 
 loop L 
 mov [edx], byte ptr 0 ; Null at end 

 
 


