
CS221
Miscellaneous x86 Instructions

Multiplication and Division – Chapter 7

The MUL instruction performs an unsigned multiplication between an 8, 16, or 32 bit
operand with the AL, AX, or EAX register. The instruction formats allowed are:

 MUL register
 MUL memory

Notice there is no MUL instruction for an immediate value, so if you want to multiply by
a constant then you must first MOV the constant to some other register or memory
location.

MUL is a bit tricky because exactly what gets multiplied depends upon the operand.
Here are three examples. Note that the product occupies more bits than the operands, and
in some cases we modify the DX register:

 MUL bl ; AX = AL * BL
 MUL bx ; DX:AX = AX * BX
 MUL ebx ; EDX:EAX = EAX * EBX

Be careful to note that the contents of the EDX register may change as a side effect to
store the high bits of the multiplication. The Carry and Overflow flags are set if the
upper half of the product is not zero.

The following multiplies AX * 160:

 PUSH BX ; Save values in these registers
 PUSH DX

MOV BX, 160
MUL BX
POP DX ; Restore values in these registers
POP BX ; Ignore any possible high bits stored in DX

The MUL instruction performs unsigned multiplication. For signed multiplication, use
the IMUL instruction. The results are identical.

Example:

 mov AX, 5
 mov BX, -1
 IMUL BX ; AX = -5 or FFFB

 mov AX, 5
 mov BX, -1
 MUL BX ; Treats BX as unsigned int, or FFFF = 65535
 ; DX:AX = 4FFFB = 327,675 = 65535*5

Division operates in a manner similar to multiplication. DIV performs unsigned integer
division on either a 8, 16, or 32 bit value. The quotient is stored in the AL/AX/EAX
register while the remainder is stored in the AH, DX, or EDX register:

 DIV bl ; AL = AX / BL AH = AX % BL
 DIV bx ; AX = (DX:AX) / BX DX = (DX:AX) % BX
 DIV ebx ; EAX = (EDX:EAX) / EBX EDX = (EDX:EAX) % EBX

Here are some examples:

 mov AX, 10
 mov BL, 2
 div BL ; AH = 0, AL = 5

 mov DX, 0
 mov AX, 65535
 mov BX, 4
 div BX ; DX = 3, AX = 16383

Do you see a problem here?

 mov AX, 0FFFFh
 mov BL, 1
 div BL ; AH = 0?, AL = ?

In this last case, we try to set AL = AX/BL. But AX/1 does not fit into AL. This causes
a division overflow error that can crash the program.

The IDIV instruction operates in a manner similar to DIV, except it performs a signed
integer division instead of unsigned.

Local Variables – Chapter 8

In the preceding lectures we have declared all variables in the data segment. These are
considered static global variables. They are global because they are accessible from
anywhere in the program. They are static because the variables “live” throughout the
lifetime of the entire program.

In contrast, local variables are:

• Accessible only by the procedure they are defined in
• Variable “dies” when the procedure exits
• More efficient use of memory than global since the storage space can be released

and made available for new variables
• Same variable name can appear in multiple procedures without a name conflict

As we have seen before when discussing the theory with the Null & Lobur textbook,
local variables are created on the runtime stack.

To declare local variables in MASM, use the LOCAL directive:

 LOCAL varname:vartype [, varname:vartype]

For arrays, use: LOCAL varname[SIZE]:varitype

Here are some examples:

 MySub proc
 LOCAL var1:BYTE ; one byte
 LOCAL var2:WORD, var3: DWORD ; a word, a dword
 LOCAL tempArray[10]:DWORD ; Array of 10 dword’s
 …
 ret
 MySub endp

What does the assembler actually generate for the directive? Here is a code example and
the corresponding disassembly taken from Visual Studio’s debugger:

myproc proc
 LOCAL var1:WORD
 LOCAL var2:WORD

 ; Body of code here

 ret
myproc endp

Here is the disassembly:

myproc proc

push ebp
mov ebp, esp
add esp, 0FCh ; Add -4 to ESP

; Body of code

mov esp, ebp
pop ebp ; Restore original ESP, EBP
ret

The ADD instruction adds -4 to ESP, moving it downward and creating an opening in the
stack between ESP and EBP to store two local variables of size word as illustrated in the
following diagrams. When we first enter the procedure, the stack looks something like
the following, with the return address of the caller placed on the stack:

The first thing we do is push the existing EBP value on the stack, which decrements the
ESP by the size of the EBP register:

Next we copy the value of ESP into EBP, which makes EBP point to the same thing as
ESP:

Memory for Stack

Return address

ESP

Stack top grows into prior memory addresses

Memory for Stack

Return addressESP

Old EBP

Next we add -4 to ESP, which is a large enough of an offset to store two words. The
local variables of size word. The variables var1 and var2 are stored here:

We can now refer to the local variables via [EBP-2], [EBP-4], or even via absolute
address if we wish. When the procedure exits, the first thing we do is move EBP to ESP,
which has the effect of popping off all the local variables we allocated:

Then we POP EBP, which restores into EBP the original value that it contained:

Memory for Stack

Return addressESP,
EBP

Old EBP

Memory for Stack

Return address

Old EBP
var1
var2

ESP

EBP

[EBP-2]

[EBP-4]

Memory for Stack

Return addressESP,
EBP

Old EBP
var1
var2

These variables still here but may be
overwritten later by the stack

Finally, we execute the RET instruction, which pops off the return address into EIP so
that we continue execution where we left off.

Within a procedure we can use stack-created variables much as we would use global
variables. One exception is to get the offset of a variable. We can no longer use the
OFFSET directive, as this only applies to global variables. OFFSET returns the distance
from the start of the data segment, which is constant and known at assembly time.
However, the address of an operand created on the stack could be anywhere in memory.
We can still get its address though, using the LEA instruction, Load Effective Address:

Format:
 LEA reg, memoperand

 Loads the address of memoperand into the register reg.

Example:

Memory for Stack

Return addressESP

Old EBP
var1
var2

These variables still here but may be
overwritten later by the stack

include irvine32.inc

.code
main proc
 call myproc
 exit
main endp

myproc proc
 LOCAL mystring[50]:BYTE

 lea edx, mystring ; offset of mystring copied to EDX
 mov ecx, 50
 call readstring ; Invoke Irvine readstring method
 call crlf
 call writestring ; Output string from mystring

 mov ecx, 49
 lea edx, mystring
 mov al, 'Z'
L: mov [edx],al ; Fill mystring with Z's
 inc edx
 loop L
 mov al, 0
 mov [edx], al ; Null at end
 call crlf
 lea edx, mystring ; Restore EDX to beginning of mystring data
area
 call writestring ; Output string

 ret
myproc endp

end main

This example waits for the user to input data, outputs it, then fills the buffer with Z’s and
outputs it again. Note that in the above example, I copied ‘Z’ into AL and then moved
AL to [EDX]. This tells the assembler to only move one byte worth of data. I could also
have used the BYTE PTR directive instead, as illustrated in the following equivalent
code:

L: mov [edx],byte ptr 'Z' ; Fill mystring with Z's
 inc edx
 loop L
 mov [edx], byte ptr 0 ; Null at end

