| nstruction Set Architecture

CSA 221
Chapter 4

| nstruction Set Architecture

The Instruction Set Architecture (ISA) view of amachine
corresponds to the machine and assembly language levels.
Typica use:

— Compiler trandates HLL to assembly

— Assembler trandates assembly into executable machine code

Direct execution of binary machine code by target machine

— C, C++, Fortran

Interpreted languages

— Lisp, BASIC

— Java, executes on a Java virtual machine (although also JIT
compilers)

— C#, .NET languages, executes on a virtual machine, the Common
Language Runtime (also JIT)

System Bus Model Revisited

e A compiled program is copied from a hard disk to the memory. The
CPU readsinstructions and data from the memory, executesthe
instructions, and storestheresults back into the memory.

CPU
(ALU, Memory Input and
Registers, Output (1/0)

and Control)

. Data Bus
=
m
£ Address Bus
;%‘
Control Bus
Common Sizesfor Data Types

Bit 0]

Nibble 0110

Byte 10110000

16-bit word (halfword) [11001001 01000110]

32-bit word 10110100 00110101 10011001 01011000]

64-bit word (double) [01011000 01010101 10110000 11110011]
(11001110 11101110 01111000 00110101]

128-bit word (quad) [01011000 01010101 10110000 11110011]
(11001110 11101110 01111000 00110101]
(00001011 10100110 11110010 11100110]
(10100100 01000100 10100101 01010001]

Big Endian vs. Little Endian

Most memories are byte-addressable

— Data stored by the byte

But the word size of most CPU’sisaword, which
occupies multiple bytes (e.g., 32 bit word is4
bytes)

— Alignment problem: may need multiple memory
accesses to retrieve an odd address (unaligned access)
vs. even address (aligned access)

Two ways to store multi-byte data
— Big Endian: Store most significant bytesfirst (not bits!)
— Little Endian: Store least significant bytes first

Endian Byte Order

E.g. given 12345678 in hex to store
Big Endian

— Byte0: 12

— Byte1l:34

— Byte2:56

— Byte3: 78

Little Endian

— Byte0: 78

— Byte1:56

— Byte2:34

— Byte3:12

Note: Thisistheinternal storage format, usually invisibleto
the user

Standard...What Standard?

* Intel (80x86), VAX arelittle-endian

* IBM 370, Motorola 680x0 (Mac), and most RISC
systems are big-endian

» Makesit problematic to translate data back and
forth between say a Mac/PC

* Internet isbig-endian

— Why? Useful control bitsin the Most Significant Byte
can be processed as the data streams in to avoid
processing the rest of the data

— Makes writing Internet programs on PC more awkward!
— Must convert back and forth

ARC Computer

* Next we present amodel computer
architecture, the ARC machine

« Simplification of the commercial SPARC
architecture from Sun Microsystems

— Still fairly complex, however —thereis enough
here to make areal system

— ARC uses a shared system bus, big-endian
memory format

ARC Memory

. Address Data
L4 32 blt addre$ e .32.blt: Address Control D]E:‘d
space (4 Gb) o 11
b M ernory 2048 = User Space
shown by y /
Word (4 / MEMORY
bytes) Top of stack le~ Stack pointer
System Stack
d M an(')ry . 231 _ 4 — | Bottom of stack
organizedinto | l
distinct [VO space oy
regions s Ou
e et

Addressvs. Data

In ARC, addresses are 32 bits and data also
32 hits
But these two could be different sizes

— We could use 20 bits for addresses, 16 bitsfor
data (8086)

— How much memory could we address?
— How many bits should the PC be?
— How many bits should general registers be?

Abstract View of a CPU

Control Unit
Datapath
Registers, ALU - Reg’'s much faster than memory
Registers
e - »| Control Unit
ALU
1 | l 1
Datapath Control Section
(Data Section)

System

Example Datapath

* Register File = collection of registers on the CPU

Register Register

Source 1 Source 2
(rsl) (rs2)
From Data
Bus
-

Register
File .
Control Unit selects
registers and ALU
function
To Address To Data
Bus ALU Bus N

Status to Control
Unit

Register Destination (rd)

ARC User Visible Registers

Register 00 | $x0
Register 01 | $r1
Register 02 | $xr2
Register 03 | $r3
Register 04 | $r4
Register 05 | $r5
Register 06 | $r6
Register 07 | $x7
Register 08 | $r8
Register 09 | %9
Register 10 | $r10
PSR $psr

32 bits—

= 0] Register 11 | $r11l Register 22 | $r22
Register 12 | $r12 Register 23 | $r23
Register 13 | $rl3 Register 24 | $r24
Registerl4 | %$r14 [%sp] Register 25 | $r25
Register 15 | $r15 [link] | Register26 | %$r26
Register 16 | $r16 Register 27 | $r27
Register 17 | $r17 Register 28 | $r28
Register 18 | $r18 Register 29 | $r29
Register 19 | $r19 Register 30 | $r30
Register 20 | $r20 Register 31 | $r31
Register 21 | $r21

Proc. Status Register spe

eg. Flags, CC 32bits—

%r0 always contains the number 0! Useful later
There are registers hidden from the user, e.g. MAR

ARC |SA

* Mnemonics - Subset of the SPARC

Memory

Logic

Arithmetic

Control

Mnemonic Meaning

1d Load a register from memory

st Store a register into memory

sethi | Load the 22 most significant bits of a register
andce | Bitwise logical AND

orcc Bitwise logical OR

orncc | Bitwise logical NOR

srl Shift right (logical)

addce | Add

call Call subroutine

jmpl Jump and link (return from subroutine call)
be Branch if equal

bneg Branch if negative

bes Branch on carry

bvs Branch on overflow

ba Branch always

ARC Assembly Language Format

o Sameformat asthe SPARC

Source Destination

Label Mnemonic operands operand Comment
[|| 1 T 1 T 1 [1
lab 1: addcc 3%rl, %r2, 3%r3 ! Sample assembly code

» Don't forget — this mnemonic maps into binary
machine code understood by the machine

Addressing Modes

— Addressing refers to how an operand refersto
the data we are interested in for a particular
instruction

—In the Fetch part of the instruction cycle, there
are generally three ways to handle addressing
In the instruction

* Immediate Addressing
* Direct Addressing
* Indirect Addressing

|mmediate Addressing

» The operand directly contains the value we
are interested in working with

—E.g.ADD 5
» Means add the number 5 to something

— This uses immediate addressing for the value 5

— The two’'s complement representation for the
number 5 is directly stored in the ADD
Instruction

— Must know value at assembly time

Direct Addressing

» The operand contains an address with the data
— E.g. ADD 100h
» Meansto add (Contents of Memory Location 100) to something
— Downside: Need to fit entire address in the instruction, may
l[imit address space

. E.g. 32 bit word size and 32 bit addresses. Do we have a problem
ere?

» Some solutions:. specify offset only, use implied segment
— Must know address at assembly time

» The address could also be a register

— E.g. ADD %r5
* Meansto add (Contents of Register 5) to something
— Upside: Not that many registers, don’t have previous
problem

Indirect Addressing

» The operand contains an address, and that address
contains the address of the data
— E.g. Add[100h]

* Means“The data at memory location 100 is an address. Go to the
address stored there and get that data and add it to the Accumulator”

— Downside: Requires additional memory access

— Upside: Can store afull address at memory location 100

* First address must be fixed at assembly time, but second address can
change during runtime! Thisis very useful for dynamically accessing
different addressesin memory (e.g., traversing an array)

» Can aso do Indirect Addressing with registers
— E.g. Add [%r3]

* Means“Thedatain register 3isan address. Go to that addressin
memory, get the data, and add it to the Accumulator”

* Indirect Addressing can be thought of as additional
instruction subcycle

Instruction Cycle State Diagram

Indirection Indirection

Instructio
aperation
decoding

Operand
address
caleulation,

Operand
address
calculatio

Data
Operation

Return for string
or vector data

Instrection complete,
feteth next instruction

Note how adding indirection slows down instructions
that don’t even useit, since we must still check for it

10

Summary - ARC Addressing Modes

Addressing Mode Syntax Meaning
Immediate #K K

Direct K MIK]

ok e (K) M[MI[K]]
Register (Rn) M|[Rn]

Register Indexed (Rm + Rn) M[Rm + Rn]
Register Based (Rm + X) M[Rm + X]
Register Based Indexed | (Rm + Rn + X) M[Rm + Rn + X]

Four ways of computing the address of a value in memory: (1) a

constant value known at assembly time, (2) the contents of a regis-
ter, (3) the sum of two registers, (4) the sum of a register and a con-
stant. The table gives names to these and other addressing modes.

ARC Machine Code

» The opcode mnemonics and the operands must all
be translated into a binary machine code that the
hardware can understand

* E.g., instruction:
— ADDCC %r1, %r3, %r4

* Isconverted by the assembler into some binary
machine code

 Let’sseethisbinary machine code format next

11

ARC Instruction Format

SETHI Format

Branch Format

CALL format

Arithmetic
Formats

i
313025 2827262524 232221 201%1817161514131211100% 0807 06 0504 03 02 01 00

oo ° [o0
T
O
1

immz22

2]

T L e e e e e e B R LI B s
2 | disp22 ‘
1

|DO| | condl D

31302928 272625242322212019 1817161514 13 12 11 10 09 08 07 06 05 04 03 02 01 00
T L S B B B R L S S B S B B B B e e
|D l| disp30 ‘
\ L L

i

1
313029 282726252423 2221 201%1817161514131211100% 0807 06 0504 03 02 01 00

T T T T T T T T T T T T T T T T T T T
|l Ol rd | OPB ‘ rsl |EI|D] CI EI D O 0 EI| rsi ‘
1 Lo 1 1 T L

|1 Ol rd | op3 ‘ rsl | | 51mm13 ‘
. Lo P PR L

11029532?2625‘423222150’19 181716151413 1211100% 0807 06 05 \‘]4 03 02 01 00
T

T T T T T T
|l l| rd) |) DF3) ‘ |I|5'|1 | |DOODDOGD| r52) ‘
Memory Formats T — T — T T — T
BE B B DR REE D E DEER T ERRNEE
op Format op2| Inst. op3 (op=10) op3 (op=11) cond| branch
00| SETHI/Branch 010| branch 010000 addcc 000000 1d 0001| be
01] CALL 100| sethi 010001 andcc 000100 st 0101| becs
10| Arithmetic 010010 orcc 0110| bneg
11| Memory 010110 orncc 0111| bvs
100110 srl 1000]| ba
111000 jmpl

Machine Code Example: LD

» Load avaueinto aregister from memory
Operands: rd = destination register

» Addressing mode options:
— Direct

e rd

< Mem(rsl + smm13)

» Assembly Notation: Id [rsl+smm13], rd
— Register indirect

e rd
One of

< Mem(rsl + rs2)
the source registers can be %r0 which is

aways zero!

12

Load Examples

» Toload contents of memory address 3 into register
5
— Notation: Id[simm13], rsl, rd
* 1d[3], %r0, %r5
» Use %r0 for rsl so we get 0+3 as the address to fetch
— Binary Code 11 00101 000000 00000 1 0000000000011
» To treat contents of register 6 as a memory address
and load the data from that address into register 7
— Notation: Idrsl, rs2, rd
* Id %r0, %r6, %r7

» Thisfetches [%r0 + %r6] but since %r0 is zero, we get [%r6]
— Binary: 11 00111 000000 00000 000000000 00110

Add Example

 Instruction: addcc

— Add with condition codes, using two's
complement arithmetic

— Addressing mode options
e Immediate
—rd € ssmm13 + rsl
* Register
—rd € rsl+rs2

13

Add Example

e Add5to%rl
— Notation: addcc rsl, smm13, rd
e addcc %r1, 5, %rl
« Binary: 10 00001 010000 00001 1 0000000000101
e Add %rlto %r2 and storein %r3
— Notation: addccrsl, rs2, rd
e addcc %r1, %r2, %r3
« Binary: 1000011 010000 00001 000000000 00010
e Load vaue 15 into %rl

— i.e. addcc %r0, 15, %rl
« Binary: 10 00001 010000 00000 1 0000000001111

Some ARC Pseudo-Ops

» Pseudo-ops are not opcodes, but are instructionsto
the assembler at assembly time, not runtime

Pseudo-Op Usage Meaning

.equ X .equ #10 Treat symbol X as (10)4

.begin .begin Start assembling

.end .end Stop assembling

.org .org 2048 Change location counter to 2048

14

Sample ARC Program

o Addstwo integersin memory, z < X +y

! This programs adds two numbers
.begin
.org 2048

progl: 1d [x], %rl | Load x into %rl
14 [yvl, %zr2 ! Load y into %r2
addcc %rl, %r2, %r3 I %r3 ¢« %rl + %r2
st $r3, [z] ! Store %r3 into z
jmpl $rl5 + 4, %r0 ! Return

X: 15

v 9

Z3 0
.end

Switching later to x86

» Studying the ARC format helps to understand how
the machine pieces together

» Later we will switch to x86 assembly programming
— Different pseudo-ops
— Different instruction format
» E.g., destination register usually the first operand, not the last
one
— Will revisit with the x86 some of the other conceptsin
chapter 4
« Using the stack and linking subroutines
* Memory mapped I/O
. Sgg? ng case study on Java Virtual Machine (but an interesting
read!

15

