
1

Instruction Set Architecture

CSA 221
Chapter 4

Instruction Set Architecture
• The Instruction Set Architecture (ISA) view of a machine

corresponds to the machine and assembly language levels.
• Typical use:

– Compiler translates HLL to assembly
– Assembler translates assembly into executable machine code

• Direct execution of binary machine code by target machine
– C, C++, Fortran

• Interpreted languages
– Lisp, BASIC
– Java, executes on a Java virtual machine (although also JIT

compilers)
– C#, .NET languages, executes on a virtual machine, the Common

Language Runtime (also JIT)

2

System Bus Model Revisited
• A compiled program is copied from a hard disk to the memory. The

CPU reads instructions and data from the memory, executes the
instructions, and stores the results back into the memory.

Common Sizes for Data Types

3

Big Endian vs. Little Endian

• Most memories are byte-addressable
– Data stored by the byte

• But the word size of most CPU’s is a word, which
occupies multiple bytes (e.g., 32 bit word is 4
bytes)
– Alignment problem: may need multiple memory

accesses to retrieve an odd address (unaligned access)
vs. even address (aligned access)

• Two ways to store multi-byte data
– Big Endian: Store most significant bytes first (not bits!)
– Little Endian: Store least significant bytes first

Endian Byte Order
• E.g. given 12345678 in hex to store
• Big Endian

– Byte 0: 12
– Byte 1: 34
– Byte 2: 56
– Byte 3: 78

• Little Endian
– Byte 0: 78
– Byte 1: 56
– Byte 2: 34
– Byte 3: 12

• Note: This is the internal storage format, usually invisible to
the user

4

Standard…What Standard?
• Intel (80x86), VAX are little-endian
• IBM 370, Motorola 680x0 (Mac), and most RISC

systems are big-endian
• Makes it problematic to translate data back and

forth between say a Mac/PC
• Internet is big-endian

– Why? Useful control bits in the Most Significant Byte
can be processed as the data streams in to avoid
processing the rest of the data

– Makes writing Internet programs on PC more awkward!
– Must convert back and forth

ARC Computer

• Next we present a model computer
architecture, the ARC machine

• Simplification of the commercial SPARC
architecture from Sun Microsystems
– Still fairly complex, however – there is enough

here to make a real system
– ARC uses a shared system bus, big-endian

memory format

5

ARC Memory

• 32 bit address
space (4 Gb)

• Memory
shown by
word (4
bytes)

• Memory
organized into
distinct
regions

Address vs. Data

• In ARC, addresses are 32 bits and data also
32 bits

• But these two could be different sizes
– We could use 20 bits for addresses, 16 bits for

data (8086)
– How much memory could we address?
– How many bits should the PC be?
– How many bits should general registers be?

6

Abstract View of a CPU
Control Unit
Datapath
Registers, ALU - Reg’s much faster than memory

Example Datapath

• Register File = collection of registers on the CPU

7

ARC User Visible Registers

%r0 always contains the number 0! Useful later
There are registers hidden from the user, e.g. MAR

Proc. Status Register
e.g. Flags, CC

ARC ISA
• Mnemonics - Subset of the SPARC

8

ARC Assembly Language Format

• Same format as the SPARC

• Don’t forget – this mnemonic maps into binary
machine code understood by the machine

Addressing Modes
– Addressing refers to how an operand refers to

the data we are interested in for a particular
instruction

– In the Fetch part of the instruction cycle, there
are generally three ways to handle addressing
in the instruction
• Immediate Addressing
• Direct Addressing
• Indirect Addressing

9

Immediate Addressing

• The operand directly contains the value we
are interested in working with
– E.g. ADD 5

• Means add the number 5 to something
– This uses immediate addressing for the value 5
– The two’s complement representation for the

number 5 is directly stored in the ADD
instruction

– Must know value at assembly time

Direct Addressing

• The operand contains an address with the data
– E.g. ADD 100h

• Means to add (Contents of Memory Location 100) to something
– Downside: Need to fit entire address in the instruction, may

limit address space
• E.g. 32 bit word size and 32 bit addresses. Do we have a problem

here?
• Some solutions: specify offset only, use implied segment

– Must know address at assembly time
• The address could also be a register

– E.g. ADD %r5
• Means to add (Contents of Register 5) to something

– Upside: Not that many registers, don’t have previous
problem

10

Indirect Addressing
• The operand contains an address, and that address

contains the address of the data
– E.g. Add [100h]

• Means “The data at memory location 100 is an address. Go to the
address stored there and get that data and add it to the Accumulator”

– Downside: Requires additional memory access
– Upside: Can store a full address at memory location 100

• First address must be fixed at assembly time, but second address can
change during runtime! This is very useful for dynamically accessing
different addresses in memory (e.g., traversing an array)

• Can also do Indirect Addressing with registers
– E.g. Add [%r3]

• Means “The data in register 3 is an address. Go to that address in
memory, get the data, and add it to the Accumulator”

• Indirect Addressing can be thought of as additional
instruction subcycle

Instruction Cycle State Diagram

Note how adding indirection slows down instructions
that don’t even use it, since we must still check for it

11

Summary - ARC Addressing Modes

ARC Machine Code

• The opcode mnemonics and the operands must all
be translated into a binary machine code that the
hardware can understand

• E.g., instruction:
– ADDCC %r1, %r3, %r4

• Is converted by the assembler into some binary
machine code

• Let’s see this binary machine code format next

12

ARC Instruction Format

Machine Code Example: LD

• Load a value into a register from memory
• Operands: rd = destination register
• Addressing mode options:

– Direct
• rd ! Mem(rs1 + simm13)
• Assembly Notation: ld [rs1+simm13], rd

– Register indirect
• rd ! Mem(rs1 + rs2)

• One of the source registers can be %r0 which is
always zero!

13

Load Examples
• To load contents of memory address 3 into register

5
– Notation: ld [simm13], rs1, rd

• ld [3], %r0, %r5
• Use %r0 for rs1 so we get 0+3 as the address to fetch

– Binary Code 11 00101 000000 00000 1 0000000000011

• To treat contents of register 6 as a memory address
and load the data from that address into register 7
– Notation: ld rs1, rs2, rd

• ld %r0, %r6, %r7
• This fetches [%r0 + %r6] but since %r0 is zero, we get [%r6]

– Binary: 11 00111 000000 00000 000000000 00110

Add Example

• Instruction: addcc
– Add with condition codes, using two’s

complement arithmetic
– Addressing mode options

• Immediate
– rd ! simm13 + rs1

• Register
– rd ! rs1 + rs2

14

Add Example

• Add 5 to %r1
– Notation: addcc rs1, simm13, rd

• addcc %r1, 5, %r1
• Binary: 10 00001 010000 00001 1 0000000000101

• Add %r1 to %r2 and store in %r3
– Notation: addcc rs1, rs2, rd

• addcc %r1, %r2, %r3
• Binary: 10 00011 010000 00001 000000000 00010

• Load value 15 into %r1
– i.e. addcc %r0, 15, %r1

• Binary: 10 00001 010000 00000 1 0000000001111

Some ARC Pseudo-Ops

• Pseudo-ops are not opcodes, but are instructions to
the assembler at assembly time, not runtime

15

Sample ARC Program
• Adds two integers in memory, z ! x + y

Switching later to x86
• Studying the ARC format helps to understand how

the machine pieces together
• Later we will switch to x86 assembly programming

– Different pseudo-ops
– Different instruction format

• E.g., destination register usually the first operand, not the last
one

– Will revisit with the x86 some of the other concepts in
chapter 4

• Using the stack and linking subroutines
• Memory mapped I/O
• Skipping case study on Java Virtual Machine (but an interesting

read!)

