CS201
Structures and Pointersto Structures (Linked Lists)

In addition to naming places and processes, an identifier can name a collection of places.
When a collection of placesis given aname, it is cdled a composite datatype and is
characterized by how theindividud places within variables of the data type can be
accessed. In this section we will look at the struct and then later we will look &t classes,
an even more powerful mechanism than the struct.

The record is avery versatile datatype. It isa collection of components of any datatype
in which the components are given names. The components of arecord are caled fields.
Each fidd has its own field identifier and datatype. Hence, arecord often contains
variables of different types.

C++ hasits own vocabulary in relation to the general concept of arecord. Records are
cdled structures (abbreviated to struct), fields are called members, and field identifiers
are called member names. We use record when we are referring to the genera concept
and struct when we are referring to a specific C++ type or variable.

To define agtruct, use the keyword struct followed by the name of the structure. Then
use curly braces followed by variable types and names:

druct StructName

{
typel varl,
type2 var 2,
type3 var N;

H

Note the need for asemicolon at the end of theright curly brace!
The above defines a structure named “ StructName”. Y ou can use StructName like it isa
new datatype. For example, the following will declare a variable to be of type
“StructName’:

StructName myVar;

Some older compilerswill require you to use struct StructName as the type instead of
just StructName.

To access the members (variables) within the Structure, use the variable name followed
by a dot and then the variable within the sruct. Thisis caled the member sdector:

myVar.varl,

Here is an example structure:

struct Recording
{
dring title
dring atig;
float cog;
int quatity;
};

Recording song;

Recording is a pattern for a group of four variables. song is astruct variable with four

members: title, artist, cost, and quantity are the member names. The accessing

expression for members of a struct varigble is the struct variable identifier followed by

the member name with a period in between.

songtitleisadring varigble.
song.atigt isagtring variable.
song.cost isafloat variable.
song.quantity isan int variable.

The only aggregate operation defined on structures is assgnment, but structures may be
passed as parameters and they may be the return value type of afunction. Assgnment
copies each member variable from the source to the destination struct. For example, the

following isvdid:
Recording songl,song2;

songltitle="Star”;
songlatis =“Bdly”;
songl.cost = 10.50;
songl.quantity = 5000;
song2 = songl,

cout << song2.title << endl;

Thiswill print out “ Star” as the contents of songl get copied to song2.

Hierarchical Records

A member of arecord can be another record. For example, we can define an additiona
member, date, of type DateType that is a struct containing members month, day, and
year.

sruct DateType

{
int month;
int day;
int year,
};
struct Recording
{
gring title;
string atis;
float cost;
int quantity;
DateType date;
};

Recording song;

song.date.month accesses the month member of the date member of song.
song.date.day accesses the day member of the date member of song.

Initialization of Structs

Y ou can initidize records by listing the vaues for the members within curly braces. The
following definition creates struct variable myFavorite, of type Recording (defined
ealier), and initidizes the members

Recording myFavorite =

"LaVie En Ros,
"Edith Pigf",
5.00,
1,
{
10, 11, 1935

}

H

Note that this requires we know the order that eements are defined in the structure.

Example Hereisthe sample code for an array of structures listed on the CS201 website.

cong int ASIZE = 10;

struct mystruct {
int num; /I A number
gring name; Il A name
};
int main()
{
mystruct arr[ASIZE]; // Array of structs
ini;

I Set each dtructures num and name to something
/I1'0" +i givesASCII for 0,1,2..9
for (i=0; i<ASIZE; i++) {

arfi].num =100 +1i;

arr[i].name = string(" Somename") + char('0+i);

}

/I Print out each structures num and name
for (i=0; i<ASIZE; i++) {

cout << atfi].num << " " << afi].name << endl;
}

return O;
}

Output:

100 Somename0
101 Somenamel
102 Somename2
103 Somename3
104 Somename4
105 Somenames
106 Somenameb
107 Somename’
108 Somename8
109 Somename9

Linked Structures

Dynamic variables combined with structures can be linked together to form dynamic

lists. We define arecord (called anode) that has at least two members: next (a pointer to
the next node in the list) and component (the type of the items on thelist). For example,
let'sassume that our listisalist of integers.

struct NodeType
{
int num; /I Some numeric vaue for this node
NodeType *next; /I Pointer to aNodeType
¥
NodeType *headPtr; /I Pointer to thefirg thing in the list
NodeType *newNodePtr; /I extra pointer

To form dynamic ligs, we link variables of NodeType together to form a chain using the
next member. We get the first dynamic list node and save its addressin the variable
headPtr. This pointer isto the first node in thelist. We then get another node and have it
accessible via newNodePtr:

headPtr = new NodeType;
newNodePtr = new NodeType;

Next, let’s store some data into the node pointers. To access the structure, we have to
first de-reference the pointer (using *) and then we need to use the dot notation to access
the member of the Structure;

(* headPtr).num = 51;
(*headPtr).next = NULL;

Instead of using the* and the. separately, C++ supports a special operator to do both
gmultaneoudy. Thisoperator isthearow: -> and itisidentica to dereferencing a
pointer and then accessing a structure:

newNodePtr->num = 55;

newNodePtr->next = NULL ;
isidenticd to

(*newNodePtr).num = 55;

(*newNodePtr).next = NULL;

Right now we have two separate NodeTypes. We can link them together to form alinked
list by having the next fidld of one pointing the address of the next node:

headPtr->next = newNodePtr;

We now have a picture that looks like:

num: 51 num: 55

headPtr next: newNodePtr next:NULL

~__ 7

Wejugt built alinked list conggting of two dementd The end of theligt is signified by
the next fidd holding NULL.

We can get athird node and store its address in the next member of the second node.
This process continues until thelist is complete. The following code fragment reads and
doresinteger numbersinto alist until the input is—1:

struct NodeType
{

int num;
NodeType * next;
H

int main()

{
NodeType * headPtr, * newNodePtr, *tall Ptr, * tempPtr;
int temp;

headPtr = new NodeType;
headPtr->next = NULL;

tail Ptr = headPtr; // Pointsto the end of thelist
cout << "Enter vaue for firs node' << end!;
cin >> headPtr->num; Il Require a least one vdue

cout << "Enter vaues for remaining nodes, with -1 to stop." << endl;
cin >> temp;
while (temp!=-1) {
I Fr fill in the new node
newNodePtr = new NodeType;
newNodePtr->num = temp;
newNodePtr->next = NULL;
// Now link it to the end of theligt
tallPtr->next=newNodePtr;
Il Set tail to the new tall
tallPtr = newNodePtr;
Il Get next vaue
cin >> temp;

This program (it isincomplete, we'll finish it below) firgt dlocates memory for headPtr
and inputsavaueintoit. It then setstallPtr equa to headPtr. tailPtr will be used to
track the end of the list while headPtr will be used to track the beginning of thelist. For
example, let’s say that initidly we enter the value 10:

num: 10
/ next: NULL
\
headPtr tailPtr

Upon entering the loop, let's say that we enter 50 which is stored into temp. First we
create a new node, pointed to by newNodePtr, and store data into it:

num: 10 num: 50
next: NULL next: NULL
\
headPtr tail Ptr newNodePtr
Thenwellink talPtr->next to newNodePtr:
num: 10 num: 50
/ next e—t1 |next: NULL
™~
headPtr tail Ptr newNodePtr

Finaly we update tail Ptr to point to newNodePtr since this has become the new end of
theligt:

num; 10 num: 50

/ nextt e&—T | next: NULL
/

headPtr tailPtr newNodePtr

Let's say that the next number we enter is 23. We will repeat the process, first dlocated a
new node pointed to by newNodePtr, and filling inits values:

num: 10 num: 50 num: 23
/ nextt ©— |next: NULL next: NULL
g [
headPtr tail Ptr newNodePtr
Then we link tail Ptr to newNodePtr:
num: 10 num: 50 num: 23
/ next: @—T |next: @& | next: NULL
/

headPtr tail Ptr newNodePtr

Findly we update tallPtr to point to the new end of the list, newNodePtr:

num: 10 num: 50 num: 23
/ next: @—T |next: & 4| next: NULL
headPtr tailptr NewNodePtr

The process shown above continues until the user enters—1. Note that this allows usto
enter an arbitrary number of dements, up until we run out of memory! This overcomes

limitations with arrays where we need to pre-dlocate a certain amount of memory (that

may turn out later to be too smdll).

Ligts of dynamic variables are traversed (nodes accessed one by one) by beginning with
the first node and accessing each node until the next member of anodeisNULL. The
following code fragment prints out the valuesin thelig.

cout << “Printing out the lig” << endl;
tempPtr = headPtr;
while (tempPtr'=NULL) {
cout << tempPtr->num << endl;
tempPtr=tempPtr->next;

}

tempPr isinitidized to headPtr, the first node. If tempPtr isNULL, thelist isempty and
the loop is not entered. If thereis a least one node in the ligt, we enter the loop, print the
member component of tempPtr, and update tempPtr to point to the next node in the list.
tempPtr is NULL when the last number has been printed, and we exit the loop.

Once we have printed out the data, we're not done! Before we exit the program, we
should make certain to free up the memory we allocated to prevent memory lesks. We
can do so in aloop smilar to the one we used to print out the list:

/I Now free the dynamically alocated memory to prevent memory lesks
while (headPtr'=NULL) {

tempPtr=headPtr;

headPtr=headPtr- >next;

delete tempPtr;

}
} /I End program (piecing together dl of the above)

This loop goes through and frees each node until we reach the end.

Note that we used two pointers above, tempPtr and headPtr. What is wrong with the
following?

while (headPtr'=NULL) {
ddlete headPtr;
headPtr=headPtr->next;
}

Because the types of alist node can be any data type, we can create an infinite variety of
ligts. Pointers aso can be used to create very complex data structures such as stacks,
queues, and trees that are the subject of more advanced computer science courses.

Some sample programs that use pointers to create linked lists and also an array of structs
is on the CS201 web page in the Sample Code link.

Pointer and Struct Example: Animal Guessng Game

Let’s do amore complex example with pointers and structures. In this example we will
write aprogram to play aguessng game. The player thinks of an anima and the
program will ask yes or no questions and try to guess what the player isthinking of.
Initidly we'll only have two types of animas that the program knows about. But each
time the player isdone, if the program isincorrect it will ask the player to input a new
question and a new anima which will be incorporated into its knowledge base.

The plan isto sart with a data struct as shown below:

Q: have stripes?

No Yes
Ptr: NULL Ptr: NULL
Ans: Bear Ans; Zebra

This structure contains the following knowledge:

- Ask player if the anima has dtripes
- If player says'Y, the null pointer means guess “ Zebrd’
- If player says N, the null pointer means guess “Bear”

Let' s say the player isthinking of atiger. We'll answer Y to “has stripes’ but N to the
animd being azebra. The program will then ask the player to enter anew question to
identify thetiger. Let’ssay the question is“hashooves?’. WEéE |l now havethe
knowledge structure shown below:

Q: have stripes?
No Yes

Ptr: NULL Ptr: —
Ans: Bear Ans: Zebra

Q: have hooves?

No Yes
Ptr: NULL Ptr: NULL
Ans: Tiger Ans. Zebra

If we sart over, the program will ask “have stripes?” and if the player types“Y” then we
go directly to the copy of the node below with “have hooves?’. Depending on the
answer, the program will guess Tiger or Zebra.

If we continue, each time the game is played and the program iswrong, it gains some
new knowledge for later. The Structurethat is crested is called abinary tree because it
resembles an upside-down tree with the root at the top. There are a most two branches
per nodeinthetree. A dightly larger tree with additiona knowledge is shown below.

No
Ptr:
Ans. Bear

Q: have stripes?

Yes

Ptr:

—

Q: eats moose?

Ans: Zebra

Q: have hooves?

No Yes No Yes
Ptr: NULL Ptr: __| Ptr: NULL Ptr: _|
Ans. Beaver Ans. Bear ‘l Ans: Tiger Ans, Zebra T
Q: Canine? Q: has horns?
No Yes No Yes
Ptr: NULL Ptr: NULL Ptr: NULL Ptr:NULL
Ans. Bear Ans: Wolf Ans: Zebra Ans. Gazelle

WE | represent each node with the following struct:

struct ani mal {
string question;
string yesGuess, noCuess;
ani mal *noPtr, *yesPtr;

b

The*yesGuess’ and “noGuess’ variables will only be used if the corresponding yesPtr or

noPtr variables are equal to NULL.

The complete program follows:

#i ncl ude <i ostreanp
#i ncl ude <string>
usi ng nanmespace std;

struct ani mal {
string question;
string yesGuess, noGuess;
ani mal *noPtr, *yesPtr;

1

/1 Prototypes

voi d Del eteTree(ani mal *rootPtr);

bool AskGuess(string sCuess);

voi d AddNewNode(ani mal *ptr, char

cYesOr No) ;

voi d Del eteTree(ani mal *rootPtr)
{
if (rootPtr==NULL) return;
Del et eTree(rootPtr->noPtr);
Del et eTree(rootPtr->yesPtr);
delete rootPtr;

}

bool AskGuess(string sCGuess)

{

char c;

cout << "Are you thinking of a
cin >> c;

cin.ignore();

if (c=="y') return true;
return false;

}

/1 Adds a new node below 'ptr' to the tree of know edge
// cYesOrNo indicates if we should add to the Yes or No branch

<< s@uess << "?" << endl;

voi d AddNewNode(ani mal *ptr, char cYesO No)
{

string sAninal;

char c;

ani mal *pNewAni mal ;

pNewAni mal = new ani mal ;
pNewAni mal - >noPt r =NULL;
pNewAni mal - >yesPt r =NULL;

if (cYesONo=="y') {
pNewAni mal - >yesGuess = ptr->yesGuess; // Set guesses to old guess
pNewAni mal - >noGuess = ptr->yesGuess;
ptr->yesPtr = pNewAni mal ;

}

el se {
pNewAni mal - >yesGuess = ptr->noCuess; // Set guesses to old guess
pNewAni mal - >noGuess = ptr->noGuess;
ptr->noPtr = pNewAni mal ;

}

cout << "What is the correct answer?" << endl;
getline(cin, sAnimal);
cout << "Please enter a question to identify your aninmal.'
getline(cin, pNewAni mal - >question);
cout << "lIs the answer 'y' or 'n'?" << endl;
cin >> c;
cin.ignore();
if (c=="y") {
pNewAni mal - >yesGuess = sAni mal ;
}

el se {
pNewAni mal - >noGuess = sAni nal ;
}

return,;

<< endl;

int main()

{

ani mal *root Ptr=NULL, *curPtr=NULL;
char c;

string sGuess, sQuestion;

bool playgane = true, madeguess = fal se;

/1l Gve sonme initial know edge to the program
rootPtr = new ani mal ;
rootPtr->noPtr = NULL; rootPtr->yesPtr=NULL;

rootPtr->question = "Does it have black stripes?";
rootPtr->yesGuess = "zebra";

root Ptr->noCuess = "otter";

cout << "Guess the animal!" << endl;

curPtr = roothktr;

whil e (playgane) {
/1 Travel down tree until we have a guess
madeguess = fal se;

whi l e (madeguess == fal se) {
cout << curPtr->question << endl;
cin > c;
cin.ignore();
if (c=="y") {

/1 Check if we reached bottom of the tree
/1 1f so, guess an ani mal
if (curPtr->yesPtr==NULL) ({
i f (AskGuess(curPtr->yesCuess)==fal se) {
/1 If we're wong, ask for the answer
AddNewNode(curPtr, 'y');

}
madeguess=tr ue;
}
el se curPtr=curPtr->yesPtr;
}
el se {
/! Check if we reached bottom of the tree
if (curPtr->noPtr==NULL) {
if (AskGuess(curPtr->noCGuess)==fal se) {
AddNewNode(curPtr, 'n');
}
madeguess=tr ue;
}
el se curPtr=curPtr->noPtr;
}
}
cout << "Play again? (y/n)" << endl;
cin >> c;

cin.ignore();
if (c=="n") playgane=fal se;
curPtr = roothktr; /] Reset cur to root node

}

Del eteTree(rootPtr); // Free up nmenory all ocated

return O;

}

This program is split up into acouple of functions. The DeleteTree function recursively
cdlsitsdf on the Yes and No branches so that we delete dl of the nodes that we created
Note that the delete cdll islagt in the ligt of recursive cdls — this makes the actual deletion
the last thing that gets done, deleting the “leaves’ of the tree before any “nodes’ are
deleted. Thetreeisthen deleted from the bottom-up.

AskGuess prompts the user with an anima and returnstrue or fase if that is the anima
the player isthinking of.

AddNewNode takes the current pointer, which should be pointing to alesf in thetree. It
takes another value that indicatesif we areto add to the “yes’ or “no” links of thetree. A
new node is creeted and filled with values input by the user.

The main function contrals the action, looping continually until aleaf node is reached
(the pointer isNULL). When this happens, the player is asked to guess and if the
program iswrong, it asks the player to enter new information via AddNewNode.

Since the program mixes the getline and cin modes of input, the cin.ignore() is used after
we read a character to skip over the remaining newline character.

This complete program is available in the Code Samples directory if you would like to
run it.

