
Recursion 

 

The programs we have discussed so far have been primarily iterative and procedural.   

Code calls other methods in a hierarchical manner.  For some problems, it is very useful 

to have the methods call themselves.  This is called a recursive method or function.  

Recursion is used in great detail in many upper division courses, so it will be very 

beneficial if you can learn the basics here in CS201!  We‟ll go through several examples, 

because you have to think somewhat differently to solve a problem recursively. 

 

Recursion works in a similar fashion to the mathematical process of induction.  First, start 

by being able to solve the simplest case of a problem, or the base case.  Sometimes this is 

referred to as the termination criteria or stopping condition.  The next step is if you are 

given a more complex problem, split it up so that it becomes a smaller version of the 

same problem to solve.  To solve it, you will use the same function.  That is, you must 

call the original function while the same function is still executing.  The difference will 

be that the new function call will take input representing smaller and smaller problems, 

until finally the base case is reached and the smallest problem is solved.  After the 

smallest problem is solved, the pieces are put back together until the large problem is 

solved.   

 

Let‟s start by looking at some problems that are nicely solved using recursion.  First, let‟s 

look at generating The Fibonacci series. 

 

The Fibonacci series begins with 0 and 1 and has the property that subsequent Fibonacci 

numbers are the sum of the previous two Fibonacci numbers: 

 

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, etc. 

 

There are many properties in nature that correspond to this number sequence.  The ratio 

of Fibonacci numbers converges on 1.618, which is the “golden ratio” found to be 

aesthetically pleasing.  Rabbits have been observed to multiply in accordance with the 

Fibonacci sequence.  The sequence also describes spirals that are seen in seashells and 

pine cones, and the numbers pop up in many other facets of nature. 

 

Let‟s look at how Fib was defined: 

 

Fib(0) = 0 

Fib(1) = 1 

Fib(2) = Fib(0) + Fib(1) = 1 

Fib(3) = Fib(2) + Fib(1) = 1 + 1 = 2 

… 

Fib(n) = Fib(n-1) + Fib(n-2)    where n >=2 

 

Now let‟s write a program to find the ith Fibonacci number, where i is some number 

entered by the user.   First let‟s solve the base case , which will be the termination criteria 

for the recursion.  This is simply to return 0 or 1 if i==0 or i==1.: 



 
public class RecursionTest 

{ 

// Find the ith Fibonacci number and return it 

 public static int Fib(int i) 

 { 

  if ((i==0) || (i==1)) { 

   return i; 

  } 

 } 

 

 public static void main(String[] args) 

 { 

  // Print out the 4th Fibonacci number 

  System.out.println(Fib(4)); 

 } 

} 

 

We‟re almost there!    This program will correctly return the 0
th

 or the 1
st
 Fibonacci 

number.  But what about bigger numbers?  We can just use the definition of Fib:  

Fib(n)=Fib(n-1) + Fib(n-2). 

 
 public static int Fib(int i) 

 { 

  if ((i==0) || (i==1)) { 

   return i; 

  } 

  else { 

   return (Fib(i-1) + Fib(i-2)); 

  } 

 } 

 

Let‟s see what this looks like in terms of method calls if we give it Fib(4): 

 



 

 

As we make the recursive calls, we are splitting the problem up into smaller versions of 

the same problem.  In this case, smaller versions mean that we are computing a smaller 

Fibonacci number.  The recursive calls end when we reach the base case, returning 0 or 1.   

Finally we end up adding together all the numbers as the recursive functions exit. 

 

Let‟s look at another problem, solving Factorial.  Factorial(n) is expressed 

mathematically as n!. 

 

n! = n * (n-1) * (n-2) * (n-3) * …. 1 

 

So, 5! = 5*4*3*2*1 

 

We can also express factorial recursively, by observing that: 

 

n! = n * (n-1)! 

 

What is the base case or termination condition for the recursion?  In this case, a simple 

base case is to know what 1! is.   

 

1! = 1. 

 

Initial call from main():  Fib(4)

Fib

i=4…

return (Fib(3)+Fib(2))

Fib

i=3…

return (Fib(2)+Fib(1))

Fib

i=2…

return (Fib(1)+Fib(0))

Fib

i=1  return 1

Fib

i=0  return 0

Fib

i=2…

return (Fib(1)+Fib(0))

Fib

i=1  return 1

Fib

i=0  return 0

Fib

i=1  return 1

1 0

1 1 01

2
1

3



We can write the factorial method as: 

 
// Return n! 

public static long factorial(long n) 

{ 

  if (n==1) return 1; 

  return (n*(factorial(n-1)); 

} 
 

Let‟s trace through factorial called from main with factorial(5): 

As the recursion exits, we multiply the numbers together to return the actual factorial 

value. 

 

When the recursive call is at the end of the function leaving no more statements on the 

stack to execute, then this is called end or tail recursion.  In general, tail-recursive 

programs can be easily converted to an iterative, rather than recursive solution.  Let‟s 

look at an iterative solution to the Fibonacci problem: 

 
public static int IterativeFib(int n) 

{ 

 int last, next_to_last, answer=0; 

 

 if ((n==1) || (n==0)) return n; 

 last=1; 

 next_to_last=0; 

 for (int i=2; i<=n; i++)  

{ 

  answer=last + next_to_last; 

  next_to_last = last; 

  last = answer; 

 } 

 return answer; 

} 

Initial call from main():  fact(5)

Fact

n=5…

return (5 * factorial(4))

Fact

n=4…

return (4 * factorial(3))

Fact

n=3…

return (3 * factorial(2))

Fact

n=2…

return (2 * factorial(1))

Fact

n=1…

return (1)

1
2

6

24

120



 

Let‟s trace through this for IterativeFib(4): 

 

Initially: 

Last=1, Next_To_last=1 

I=2 

 Answer = 1+0 = 1 

 Next_To_Last = 1 

 Last = 1 

I=3 

 Answer = 1+1 = 2 

 Next_To_Last = 1 

 Last = 2 

I=4 

 Answer = 2 + 1 = 3 

 Next_To_Last = 2 

 Last = 3 

Exit, returning 3 

 

Why is this more efficient than the recursive version of Fib?  First, the iterative version 

doesn‟t have the overhead of making method calls and pushing variables onto the stack 

that the recursive version does.  Even more importantly, the iterative version runs in 

linear time to n.  That is, it needs to do some factor times n computations.    

 

In contrast, the recursive version makes on the order of Fibonacci Number of 

comparisons.  This is exponential as n grows.  For Fib, this is because we re-compute a 

large number of repeat Fibonacci numbers.   For example, consider Fib(6): 

 

 

We‟re recomputing Fib(4) here twice, Fib(3) 3 times, Fib(2) 5 times, etc.! !   This is a 

huge amount of computation!   

 

Fib(1) Fib(0)

Fib(2) Fib(1)

Fib(3)

Fib(1) Fib(0)

Fib(2)

Fib(4)

Fib(1) Fib(0)

Fib(2) Fib(1)

Fib(3)

Fib(5)

Fib(1) Fib(0)

Fib(2) Fib(1)

Fib(3)

Fib(1) Fib(0)

Fib(2)

Fib(4)

Fib(6)



It turns out that the number of calls we need to make is around 2
n
 in recursive Fibonacci.  

Consider a value of n that is 30.  This means we would have to make around 2
30

 or about 

a billion function calls to compute the 30
th

 fibonacci number!  Obviously, trying to 

compute the 1000
th

 fibonacci number would not be feasible using the recursive routine.  

However, computing the 30
th

 fibonacci using the iterative solution would only require 

some factor of 30 computations!   

 

From this little example it looks like iteration is better than recursion.  For the Fibonacci 

method, it most certainly is.  However, there are many other methods where it is much 

more elegant and much easier (and just as efficient) to write a recursive solution.  We‟ll 

see some of these a bit later. 

 

Exercise:  Write a recursive method “exponent” that computes x raised to the yth power: 

 e.g. exponent(2,5) should return 2
5
 or 32. 



So far we‟ve been building up our answer as the recursive method calls end, piecing 

together each return value to make the final answer.  Let‟s write the factorial program 

recursively, but instead of building the final value as the recursive calls end, we will build 

the value up and return it when we‟ve reached the end of the recursion.  In this case, we‟ll 

pass a parameter to each recursive call that contains the current solution. 

 

The factorial call will be invoked via:  factorial(number, current-solution), where we will 

initialize our current-solution to be some initial base number.  For factorial, 1 is a good 

initial base number since we‟ll be multiplying values up. 

 
public static long factorial(long n, long current_solution) 

{ 

 if (n==1) return current_solution; 

 current_solution = n * current_solution; 

 return (factorial(n-1, current_solution)); 

} 

 

Let‟s look at what happens when this is invoked to compute the factorial of 5.  We start 

with a current_solution of 1, and invoke the function as: factorial(5,1); 

 

 

In this case, we compute the factorial as we make the recursive calls.  When we finally 

reach the end of the recursion , where n =1, we simply return back the value we‟ve 

computed.  In this example, the final factorial is returned from each method call. 

 

factorial(5,1)

factorial

n=5, current_solution=1

current_solution=1*5=5

return (factorial(4,5))

factorial

n=4, current_solution=5

current_solution=5*4=20

return (factorial(3,20))

factorial

n=3, current_solution=20

current_solution=20*3=60

return (factorial(2,60))

factorial

n=2, current_solution=60

current_solution=60*2=120

return (factorial(1,120))

factorial

n=1, current_solution=120

return 120

120

120
120

120

120



So far, we‟ve been looking at tail-recursive methods.  Let‟s look at a method that doesn‟t 

use tail recursion.  See if you can figure out what the following code would do: 

 
 public static void Mystery()  

 { 

  Scanner keyboard = new Scanner(System.in); 

  String s; 

  try { 

   s = keyboard.nextLine();  

  } 

  catch (Exception e) { 

   System.out.println(e); 

   System.exit(0); 

  } 

  if (!s.equals(".")) Mystery(); 

  System.out.println(s); 

 } 

 

 public static void main(String[] args) 

 { 

  Mystery(); 

 } 

 

When we run this code, let‟s say we give it the input of: 

 

neat 

foo 

bar 

zot 

. 



Mystery() 

 s=‟neat‟ 

 Mystery() 

  s=‟foo‟ 

  Mystery() 

   s=‟bar‟ 

   Mystery() 

    s=‟zot‟ 

    Mystery() 

     s=‟.‟ 

     no recursive call! 

     Print out “.” 

     Return 

    Print out „zot‟ 

    Return 

   Print out „bar‟ 

   Return 

  Print out „foo‟ 

  Return 

 Print out „neat‟ 

 Return 

 

If we look at the order in which text was printed, we get the input data in reverse.  So 

what the mystery program does is reverse each line of input you give, ending with a 

period.   This behavior is made possible because in each recursive call, we get a new 

local variable for s which is set to whatever the user types in.  Thanks to the stack, as the 

recursive calls exit, the computer remembers where we left off in the execution along 

with the contents of the variable s at the time the recursive call was made. 

 

Binary Search 

 

Recursion gives us a particularly nice way to search for data quickly in a sorted array.  

Binary search is much quicker than simple linear search, where we scan through each 

item in the array one by one until we find (or don‟t find) what we‟re looking for. 

 

The binary search algorithm eliminates one-half of the elements in the array being 

searched after each comparison.  The algorithm starts at the middle element of the array 

and compares it with the search key.  If they are equal, the search key is found and the 

array information is returned.  Otherwise, the problem is reduced to searching one half of 

the array.  If the search key is less than the middle element, the first half is searched; 

otherwise the second half is searched.  The process continues until the search key is equal 

to the middle element or the subarray consists of one element that is not equal to the 

search key (ie. The key is not found). 

 

Here is pseudocode for a recursive solution to the binary search algorithm.   

 



int BinarySearch(int array A, int SearchKey, int StartIndex, int EndIndex) 

 if StartIndex>EndIndex 

  return Not-Found 

 midIndex = (StartIndex + EndIndex) / 2 

 if A[midIndex] == SearchKey      

return midIndex 

 else if A[midIndex] > SearchKey 

  // Search first half 

  return BinarySearch(A, SearchKey, StartIndex, midIndex-1) 

 else 

  // Search second half 

  return BinarySearch(A, SearchKey, midIndex+1, EndIndex) 

 

Initially, the routine requires the leftmost and rightmost bounds of the array to be passed 

in (e.g. 0 to array length -1). 

 

This routine requires log2 comparisons to search through n records, a tremendous 

increase in performance over linear search for large values of n.  (e.g, n=1048576, 

log2(n)=20). 

 

Here is an example of binary search to find the index of an element in a array of integers: 

 
 

 public static int BinarySearch(int[] a, int target, 

   int startIndex, int endIndex) 

 { 

  int mid; 

 

  if (startIndex > endIndex) return -1; 

  mid = (startIndex + endIndex) / 2; 

  if (a[mid] == target) return mid; 

  else if (a[mid] > target)  

     return BinarySearch(a, target, startIndex, mid-1); 

  else 

     return BinarySearch(a, target, mid+1, endIndex); 

 } 

 

 

 public static void main(String[] args) 

 { 

  int[] a = {13,16,31,53,97}; 

  System.out.println(BinarySearch(a,97,0,a.length - 1)); 

 }



The array a initially contains the following: 

 

a[0]=13 

a[1]=16 

a[2]=31 

a[3]=53 

a[4]=97 

 

then let‟s trace through what happens when we invoke the method to find the index 

containing target value 97: 

 

Initial call:  

BinarySearch(a, 97, 0, a.length-1) 

BinarySearch (a, 97, 0, 4) 

 mid = 4 /2  = 2 

 a[2] < 97 so 

  return BinarySearch (a, 97, 2+1, 4) 

             BinarySearch (a, 97, 3, 4) 

     mid = (3+4) / 2 = 3 

     a[3] < 97 so 

     return BinarySearch(a, 97, 3+1, 4) 

                  BinarySearch (a, 97, 4, 4) 

       mid = (4+4) / 2 = 4 

       a[4] == 97  

       return 4 

 

In this case, we made three comparisons, less than the five comparisons if we made a 

linear search.  Note that there is a larger amount of overhead in this scheme than the 

linear search, however.  For very small arrays, it will be faster to do linear search than 

binary search.  As the array size increases however, binary search quickly outperforms 

linear search. 

 



Towers of Hanoi 

 

As a final example, let‟s look at a problem that really shows the power of recursion.  

Even though the problem is fairly complex, through the elegance and power of recursion 

our solution will be very short.  The problem we will examine is the game of the Towers 

of Hanoi. 

 

In the Towers of Hanoi, the game is played with three pegs and a pile of disks of different 

sizes.  We start with all the disks stacked on one peg: 

 

The object of the game is to move the entire stack from peg 1 to peg 3 while obeying the 

following rules: 

1. Only one disk can be moved at a time 

2. A larger disk can never go on top of a smaller disk 

 

According to legend, there was a religious temple with 64 such golden disks.  The end of 

the game was supposed to signal the end of the world.  In reality, the game was likely 

invented by a French mathematician.  Nevertheless, let‟s write a computer solution to 

help facilitate the end of the world! 

 

Let‟s start with the base case.  A stack with a height of 1 is trivial.  All we need to do is 

move it from peg 1 to peg 3. 

 

A stack with a height of 2 is also pretty trivial.  All we need to do is move the first disk 

out of the way onto our temporary peg, which is peg 2.  So we move from peg 1 to peg 2.  

Then move the second disk from peg 1 to peg 3.  Finally move the disk on peg 2 to peg 3. 

 

A stack with a height of 3 gets more interesting.  Rather than figure out a specific set of 

moves to solve our problem, let‟s say that we move the top two disks to peg 2.  We can 

do this using the same procedure we outlined above for a stack with a height of 2, only 

we are making the final destination as peg 2, not peg 3.    In this case, we‟d be using peg 

3 as the temporary peg.   Once the top two disks are in order on peg 2, we move the large 

disk on peg 1 to peg 3.  Then we repeat the process of moving the stack from peg 2 onto 

peg 3.  The end result is all the disks in order on peg 3. 

 

A stack with a height of 4 can be solved using the same idea.  Rather than figure out a 

specific set of moves, let‟s use the solution we generated for a stack with a height of 3.  

Move the top three disks from peg 1 to peg 2.  Then move the large disk from peg 1 to 

peg 3.  Finally move the stack of three disks on peg 2 to peg 3.   



 

A stack with a height of 5 or any higher number can be solved the same way! 

 

Let‟s summarize our solution given N pegs to move: 

 

If N==1, move directly from the source to destination peg 

Otherwise: 

 Move N-1 pegs from the source to the middle peg  

 Move 1 disk from the source to the destination peg 

 Move N-1 pegs from the middle peg to the destination peg 

 

Here is code to solve the Towers of Hanoi problem: 

 
 public static void Hanoi(int height, int sourcePeg, int tempPeg, 

 int destPeg) 

 { 

  if (height==1) { 

   System.out.println("Move disk from peg " + 

    sourcePeg + " to " + destPeg); 

  } 

  else { 

   Hanoi(height-1, sourcePeg, destPeg, tempPeg); 

   System.out.println("Move disk from peg " + 

    sourcePeg + " to " + destPeg);  

   Hanoi(height-1, tempPeg, sourcePeg, destPeg); 

  } 

 } 

 

 public static void main(String[] args) 

 { 

  Hanoi(4,1,2,3); 

 } 

 

Here is the output of this program: 

 

Move disk from peg 1 to 2 

Move disk from peg 1 to 3 

Move disk from peg 2 to 3 

Move disk from peg 1 to 2 

Move disk from peg 3 to 1 

Move disk from peg 3 to 2 

Move disk from peg 1 to 2 

Move disk from peg 1 to 3 

Move disk from peg 2 to 3 

Move disk from peg 2 to 1 

Move disk from peg 3 to 1 

Move disk from peg 2 to 3 

Move disk from peg 1 to 2 

Move disk from peg 1 to 3 

Move disk from peg 2 to 3 



 

If you verify this, it correctly moves all the disks from peg 1 to peg 3. 

 

Let‟s trace through this for a slightly smaller problem, using Hanoi with a height of 3:  

Hanoi(3, 1, 2, 3); 

 

Hanoi(h=3, s=1, t=2, d=3) 

 Hanoi(h=2, s=1, t=3, d=2) 

  Hanoi(h=1, s=1, t=2, d=3) 

   Move disk from peg 1 to 3 

   Return 

  Move disk from peg 1 to 2 

  Hanoi(h=1, s=3, t=1, d=2) 

   Move disk from peg 3 to 2 

   Return 

  Return 

 Move disk from peg 1 to 3 

 Hanoi(h=2, s=2, t=1, d=3) 

  Hanoi(h=1, s=2, t=3, d=1) 

   Move disk from peg 2 to 1 

   Return 

  Move disk from peg 2 to 3 

  Hanoi(h=1, s=1, t=2, d=3) 

   Move disk from peg 1 to 3 

   Return 

  Return 

 Return 


