
ArrayLists, Generics

A data structure is a software construct used to organize our data in a particular way.

Some common data structures include lists, stacks, queues, and heaps. Dynamic data

structures are those data structures that can grow as needed while a program is running.

First we will look at a useful class provided by Java called an ArrayList. This class

uses a feature called generics to allow us to create lists of arbitrary data types. Then we

will see how to create our own data structures, in particular, how to create dynamically

linked lists.

ArrayLists

The ArrayList class provided by Java is essentially a way to create an array that can grow

or shrink in size during the execution of a program. If you recall the section on arrays,

once we declared an array to be a particular size we were not able to change that size.

For example, in our trivia game we declared the array to be of size 5. This means we

have a maximum of 5 questions and can never exceed that amount. This is because Java

allocates a specific amount of memory to hold exactly the number of items we initially

specified. We could get around that problem by creating a new array of the size we like

and copy the elements we want into it, but this approach is time consuming. The arraylist

class does the dirty work for us to give us the same effect as a dynamic array.

 If arraylists do the same thing as arrays but are dynamic, why not use them all the time?

We could (and some people do) but there are two good reasons to use arrays over

arraylists:

1. Arrays are more efficient than arraylists

2. The elements in an arraylist must be objects (which contributes to #1 for

simple items)

3. We can’t use the convenient [] notation on arraylists

If we wanted an arraylist of int’s, then we instead we would have to make an arraylist of

class Integer, which is a wrapper class for objects of type int (or we could make our own

class).

Here is how we use an arraylist. To access the arraylist code we can import the class via:

 import java.util.ArrayList;

To create a variable of type ArrayList that is a list of type DataType use the following:

 ArrayList<DataType> varName = new ArrayList<DataType>();

If you know how many items the arraylist will likely need, execution can be a bit faster

by specifying an initial capacity. Note however that we can still change the size later

during runtime if we want to. The example below initializes the arraylist with 50

elements:

 ArrayList<Integer> a = new ArrayList<Integer>(50);

Here are methods to manipulate data in an arraylist:

public boolean add (BaseType newElement)

 Adds a new object to the end of the arraylist.

 Recall that all classes are derived from class Object, therefore

 all classes are supported as parameters for this method.

public void add(int index, BaseType newElement)

 Inserts the newElement at position index and pushes everything else

 after this object down by one in the arraylist.

public void set(int index, BaseType newElement)

 Sets an existing element at position index to newElement.

 Index starts at 0.

 An element at this index must previously exist (i.e. can’t use

 to add to a new position)

public BaseType get(int index)

 Returns the object at position index

 Index starts at 0.

public BaseType remove(int index)

 Deletes the element at position index and moves everything else

 after this object up by one in the arraylist. Returns the object removed.

public int indexOf(Object target)

 Returns the index of the first element equal to target or -1 if not found.

 This method invokes the equals() method of the object, so if your

 object does not implement and override equals() inherited from class

 object, most likely this method will not work properly!

public void remove(BaseType element)

 Removes element from the arraylist by first searching for it using

 the equals method. Requires that equals be overridden.

public int size()

 Returns the number of elements placed in the arraylist

Here is a basic example:

import java.util.ArrayList;

public class Test

{

 public static void main(String[] args)

 {

 ArrayList<String> stringList = new ArrayList<String>();

 stringList.add("foo");

 stringList.add("bar");

 stringList.add("zot");

 stringList.add("bah");

 System.out.println("Size of List: " + stringList.size());

 System.out.println("Contents:");

 for (int i = 0; i < stringList.size(); i++)

 {

 System.out.println("At index " + i + " value=" +

 stringList.get(i));

 }

 stringList.remove("bar");

 System.out.println("Contents after remove bar:");

 for (int i = 0; i < stringList.size(); i++)

 {

 System.out.println("At index " + i + " value=" +

 stringList.get(i));

 }

 stringList.remove(1);

 System.out.println("Contents after remove 1:");

 for (int i = 0; i < stringList.size(); i++)

 {

 System.out.println("At index " + i + " value=" +

 stringList.get(i));

 }

 stringList.add(1, "meh");

 System.out.println("Contents after add 1:");

 for (int i = 0; i < stringList.size(); i++)

 {

 System.out.println("At index " + i + " value=" +

 stringList.get(i));

 }

 stringList.set(1, "bar");

 System.out.println("Contents after set 1:");

 for (int i = 0; i < stringList.size(); i++)

 {

 System.out.println("At index " + i + " value=" +

 stringList.get(i));

 }

 System.out.println("Index of bar:");

 System.out.println(stringList.indexOf("bar"));

 System.out.println("Index of zzz:");

 System.out.println(stringList.indexOf("zzz"));

 }

}

Here is another simple example. Let’s say we would like to make an arraylist of integers.

To drive home the point that the arraylist only works with objects, we’ll make our own

Integer class (but we could have used the built-in Integer class too).

import java.util.ArrayList;

// Simple integer class with just two constructors.

// A more robust version would make the int m_value private with

// accessor methods instead

public class MyIntClass

{

 public int m_value;

 public MyIntClass()

 {

 m_value = 0;

 }

 public MyIntClass(int i)

 {

 m_value = i;

 }

}

// This class illustrates common uses of the arraylist

public class ArrayL

{

 public static void main(String[] args)

 {

 ArrayList<MyIntClass> v = new ArrayList<MyIntClass>();

 int i;

 // First add 4 numbers to the arraylist

 for (i=0; i<4; i++)

 {

 v.add(new MyIntClass(i));

 }

 // Print out size of the arraylist, should be 4

 System.out.println("Size: " + v.size() + "\n");

 // Print arraylist

 System.out.println("Original arraylist:");

 PrintArraylist(v);

 // Remove the second element

 v.remove(2);

 // Print out the elements again

 System.out.println("After remove:");

 PrintArraylist(v);

 // Insert the number 100 at position 1

 v.add(1, new MyIntClass(100));

 // Print out the elements again

 System.out.println("After insert:");

 PrintArraylist(v);

 }

 // This method prints out the elements in the arraylist

 public static void PrintArraylist(ArrayList<MyIntClass> v)

 {

 MyIntClass temp;

 int i;

 for (i=0; i<v.size(); i++)

{

 temp = v.get(i);

 System.out.println(temp.m_value);

 }

 System.out.println();

 }

}

Let’s try using the indexOf method:

 // Index of -1

 System.out.println("Position of 1");

 System.out.println(v.indexOf(new MyIntClass(1)));

Adding this gives an output of:
Position of 1

-1

This is not right, the list has a node with the value of 1 in position 2. We are getting -1

back because the indexOf method invokes the equals method for the BaseType

object to determine which item in the arraylist matches the target. However, we didn’t

define one ourselves, so our program is really using the equals method defined for

Object (which is inherited automatically for any object we make). However, this

definition of equals only checks to see if the addresses of the objects are identical, which

they are not in this case. What we really need to do is see if the integer values are the

same by defining our own equals method. Add to the MyIntClass object:

public boolean equals(Object otherIntObject)

 {

 MyIntClass otherInt = (MyIntClass) otherIntObject;

 if (this.m_value == otherInt.m_value)

 return true;

 return false;

 }

If we run the program now, it will output:
Position of 1

2

A few comments of note: First, we had to define equals with an input parameter of

type Object. This is because this is how the method is defined in the Object class

which we need to override (and is invoked by the indexOf method). This means we

have to typecast the object back to our class of MyIntClass. Once this is done we can

compare the ints.

For Each Loop

Iterating through an arraylist is such a common occurrence that Java includes a special

type of loop specifically for this purpose. Called the for-each loop, it allows you to easily

iterate through every item in the arraylist. The syntax looks like this:

for (BaseType varName : ArrayListVariable)

{

 Statement with varName

}

Here is a modified version of the PrintArrayList method from the previous example, but

using the for each loop:

 // This method prints out the elements in the arraylist

 public static void PrintArraylist(ArrayList<MyIntClass> v)

 {

 for (MyIntClass intObj : v)

 {

 System.out.println(intObj.m_value);

 }

 System.out.println();

 }

Future Java courses will cover data structures called Collections (e.g. sets, maps, hash

tables); you can iterate through these collections using the same for-each loop.

Short Introduction to Generics

The ArrayList class used something new. It took as input a data type, in our case a

MyIntClass definition, and used that to create the list. This type of class is called a

generic class or a parameterized class. We can define our own generic classes if we

wish.

We won’t go into much detail here, but will just give a short example. Let’s say we

would like to make a class that can hold a Set of data. We can define a Set class that

uses an ArrayList to store its data internally. In our add method we ensure there are no

duplicate entries in the arraylist since most sets typically have no duplicates:

import java.util.ArrayList;

class MyGenericSet<T> // Add <T> here to define a generic class

{

 private ArrayList<T> data;

 public MyGenericSet()

 {

 data = new ArrayList<T>();

 }

 public void add(T item) // Use T for the generic data type

 {

 if (!data.contains(item))

 data.add(item);

 }

 public boolean contains(T item)

 {

 return (data.contains(item));

 }

 public void remove(T item)

 {

 data.remove(item);

 }

}

Here is a main method to test it, using sets of integers and strings:

 public static void main(String[] args)

 {

 MyGenericSet<String> set1 = new MyGenericSet<String>();

 set1.add("java");

 set1.add("c++");

 set1.add("php");

 System.out.println(set1.contains("java"));

 System.out.println(set1.contains("english"));

 MyGenericSet<Integer> set2 = new MyGenericSet<Integer>();

 set2.add(3);

 set2.add(55);

 System.out.println(set2.contains(20));

 System.out.println(set2.contains(55));

 }

